I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-A, Issue: 3, page 465-495
- ISSN: 0392-4041
Access Full Article
topHow to cite
topGiorgilli, Antonio. "I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale." Bollettino dell'Unione Matematica Italiana 10-A.3 (2007): 465-495. <http://eudml.org/doc/289682>.
@article{Giorgilli2007,
author = {Giorgilli, Antonio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {465-495},
publisher = {Unione Matematica Italiana},
title = {I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale},
url = {http://eudml.org/doc/289682},
volume = {10-A},
year = {2007},
}
TY - JOUR
AU - Giorgilli, Antonio
TI - I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/12//
PB - Unione Matematica Italiana
VL - 10-A
IS - 3
SP - 465
EP - 495
LA - ita
UR - http://eudml.org/doc/289682
ER -
References
top- ARNOLD, V. I., Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk, 18, 13 (1963); Russ. Math. Surv., 18 (1963), 9. MR163025
- ARNOLD, V. I., Small denominators and problems of stability of motion in classical and celestial mechanics, Usp. Math. Nauk, 18 N. 6 (1963), 91; Russ. Math. Surv., 18 N. 6 (1963), 85. MR170705
- ARNOLD, V. I., Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 5 N. 1 (1964), 581-585. Zbl0135.42602
- BENETTIN, G. - GALGANI, L. - GIORGILLI, A. - STRELCYN, J. M., Tous les nombres characteristiques de Ljapunov sont effectivement calculables, C. R. Acad. Sc. Paris268 A (1978), 431-433. Zbl0374.65046MR516345
- BENETTIN, G. - GALGANI, L. - GIORGILLI, A. - STRELCYN, J. M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: theory, Meccanica (1980), 9-20; Part 2: numerical applications, Meccanica (1980), 21-30. Zbl0488.70015
- BENETTIN, G. - GALGANI, L. - GIORGILLI, A., A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech., 37 (1985), 1-25. Zbl0602.58022MR830795DOI10.1007/BF01230338
- BENETTIN, G. - GALLAVOTTI, G., Stability of motions near resonances in quasi- integrable Hamiltonian systems. Journ. Stat. Phys., 44 (1986), 293. Zbl0636.70018MR857061DOI10.1007/BF01011301
- BIRKHOFF, G. D., Dynamical systems, New York (1927). MR209095
- CARPINO, M. - MILANI, A. - NOBILI, A., Long term numerical integration and synthetic theories for the motion of outer planets, Astronomy and Astrophysics, 181 (1987), 182-194. Zbl0618.70006
- CELLETTI, A. - CHIERCHIA, L., KAM stability and Celestial Mechanics, Memoirs of AMS, 187 n. 878 (2007). MR2307840DOI10.1090/memo/0878
- CONTOPOULOS, G., Order and chaos in dynamical Astronomy, Springer-Verlag (2002). Zbl1041.85001MR1988785DOI10.1007/978-3-662-04917-4
- EFTHIMIOPOULOS, C. - SANDOR, Z., Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. R. Astron. Soc., (2005).
- FERMI, E. - PASTA, J. - ULAM, S., Studies of nonlinear problems, Los Alamos document LA-1940 (1955). Zbl0353.70028
- GIORGILLI, A. - ZEHNDER, E., Exponential stability for time dependent potentials, ZAMP (1992). Zbl0766.58032MR1182784DOI10.1007/BF00913410
- GIORGILLI, A. - SKOKOS, Ch., On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261.
- GIORGILLI, A., Notes on exponential stability of Hamiltonian systems, in Dynamical Systems, Part I: Hamiltonian systems and Celestial MechanicsPubblicazioni del Centro di Ricerca Matematica Ennio De Giorgi, Pisa (2003), 87-198. Zbl1081.37033MR2071233
- GUSTAVSON, F. G., On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astron. J., 71 (1966), 670-686.
- HENON, M. - HEILES, C., The applicability of the third integral of motion: some numerical experiments, Astron. J., 69 (1964), 73-79. MR158746DOI10.1086/109234
- KIRKWOOD, D., Proceedings of the American Association for the Advancement of Science for 1866. MR1568920
- KIRKWOOD, D., The zone of asteroids and the ring of Saturn, Astronomical Register, 22 (1884), 243-247.
- KOLMOGOROV, A. N., Preservation of conditionally periodic movements with small change in the Hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527. Zbl0056.31502MR68687
- LASKAR, J., A numerical experiment on the chaotic behaviour of the solar system, Nature, 338 (1989), 237-238.
- LASKAR, J., Large scale chaos in the solar system, Astron. Astroph., 287 (1994). Zbl1052.70547
- LITTLEWOOD, J. E., On the equilateral configuration in the restricted problem of three bodies, Proc. London Math. Soc. (3) 9 (1959), 343-372. Zbl0092.16802MR109077DOI10.1112/plms/s3-9.3.343
- LITTLEWOOD, J. E., The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3) 9 (1959), 525-543. Zbl0093.17302MR1576803DOI10.1112/plms/s3-9.4.525
- LOCATELLI, U. - GIORGILLI, A., Invariant tori in the Sun-Jupiter-Saturn system, DCDS-B, 7 (2007), 377-398. Zbl1129.70015MR2276414DOI10.3934/dcdsb.2007.7.377
- LOCHAK, P., Canonical perturbation theory via simultaneous approximations, Usp. Math. Nauk.47 (1992), 59-140. English transl in Russ. Math. Surv. Zbl0795.58042MR1209145DOI10.1070/RM1992v047n06ABEH000965
- MILANI, A. - NOBILI, A. - CARPINO, M., Secular variations of the semimajor axes: theory and experiments, Astronomy and Astrophysics, 172 (1987), 265-269. Zbl0617.70009
- MOLTCHANOV, A., The resonant structure of the solar system, Icarus8 (1968), 203-215.
- MORBIDELLI, A. - GIORGILLI, A., On the dynamics in the asteroids' belt. Part I: general theory, Cel. Mech.47 (1990), 145-172. Zbl0701.70010MR1050337DOI10.1007/BF00051203
- MORBIDELLI, A. - GIORGILLI, A., On the dynamics in the asteroids' belt. Part II: detailed study of the main resonances, Cel. Mech., 47 (1990), 173-204. Zbl0701.70011MR1050338DOI10.1007/BF00051204
- MORBIDELLI, A. - GIORGILLI, A., Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607-1617. MR1316113DOI10.1007/BF02180145
- MORBIDELLI, A., Modern celestial Mechanics. Aspects of solar system dynamics, Taylor & Francis, London (2002).
- MOSER, J., Stabilitätsverhalten kanonisher differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl IIa, nr. 6 (1955), 87-120.
- MOSER, J., On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II (1962), 1-20. Zbl0107.29301
- MOSER, J., Stable and random motions in dynamical systems, Princeton University press, Princeton (1973). Zbl0271.70009
- MURRAY, N. - HOLMAN, M., The Origin of Chaos in Outer Solar System, Science, 283, Iss. 5409, 1877 (1999).
- NEKHOROSHEV, N. N., Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surveys, 32 (1977), 1. Zbl0389.70028
- NEKHOROSHEV, N. N., Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2. Trudy Sem. Petrovs., 5 (1979), 5.
- ROBUTEL, P. - GABERN, F. - JORBA, A., The observed Trojans and the global dynamics around the Lagrangian points of the Sun-Jupiter system, Celest. Mech. Dyn. Astr., 92 (2005), 53-69. Zbl1083.70019
- ROELS, J. - HNON, M., Recherche des courbes invariantes d'une transformation ponctuelle plane conservant les aires, Bull. Astron., 32 (1967), 267-285. Zbl0171.22902
- SUSSMAN, G. J. - WISDOM, J., Numerical evidence that the motion of Pluto is chaotic, Science, 241 (1988), 433-437.
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.