I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale

Antonio Giorgilli

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-A, Issue: 3, page 465-495
  • ISSN: 0392-4041

How to cite

top

Giorgilli, Antonio. "I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale." Bollettino dell'Unione Matematica Italiana 10-A.3 (2007): 465-495. <http://eudml.org/doc/289682>.

@article{Giorgilli2007,
author = {Giorgilli, Antonio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {465-495},
publisher = {Unione Matematica Italiana},
title = {I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale},
url = {http://eudml.org/doc/289682},
volume = {10-A},
year = {2007},
}

TY - JOUR
AU - Giorgilli, Antonio
TI - I moti quasi periodici e la stabilità del sistema solare. II: Dai tori di Kolmogorov alla stabilità esponenziale
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/12//
PB - Unione Matematica Italiana
VL - 10-A
IS - 3
SP - 465
EP - 495
LA - ita
UR - http://eudml.org/doc/289682
ER -

References

top
  1. ARNOLD, V. I., Proof of a theorem of A. N. Kolmogorov on the invariance of quasi-periodic motions under small perturbations of the Hamiltonian, Usp. Mat. Nauk, 18, 13 (1963); Russ. Math. Surv., 18 (1963), 9. MR163025
  2. ARNOLD, V. I., Small denominators and problems of stability of motion in classical and celestial mechanics, Usp. Math. Nauk, 18 N. 6 (1963), 91; Russ. Math. Surv., 18 N. 6 (1963), 85. MR170705
  3. ARNOLD, V. I., Instability of dynamical systems with several degrees of freedom, Sov. Math. Dokl., 5 N. 1 (1964), 581-585. Zbl0135.42602
  4. BENETTIN, G. - GALGANI, L. - GIORGILLI, A. - STRELCYN, J. M., Tous les nombres characteristiques de Ljapunov sont effectivement calculables, C. R. Acad. Sc. Paris268 A (1978), 431-433. Zbl0374.65046MR516345
  5. BENETTIN, G. - GALGANI, L. - GIORGILLI, A. - STRELCYN, J. M., Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: theory, Meccanica (1980), 9-20; Part 2: numerical applications, Meccanica (1980), 21-30. Zbl0488.70015
  6. BENETTIN, G. - GALGANI, L. - GIORGILLI, A., A proof of Nekhoroshev's theorem for the stability times in nearly integrable Hamiltonian systems. Cel. Mech., 37 (1985), 1-25. Zbl0602.58022MR830795DOI10.1007/BF01230338
  7. BENETTIN, G. - GALLAVOTTI, G., Stability of motions near resonances in quasi- integrable Hamiltonian systems. Journ. Stat. Phys., 44 (1986), 293. Zbl0636.70018MR857061DOI10.1007/BF01011301
  8. BIRKHOFF, G. D., Dynamical systems, New York (1927). MR209095
  9. CARPINO, M. - MILANI, A. - NOBILI, A., Long term numerical integration and synthetic theories for the motion of outer planets, Astronomy and Astrophysics, 181 (1987), 182-194. Zbl0618.70006
  10. CELLETTI, A. - CHIERCHIA, L., KAM stability and Celestial Mechanics, Memoirs of AMS, 187 n. 878 (2007). MR2307840DOI10.1090/memo/0878
  11. CONTOPOULOS, G., Order and chaos in dynamical Astronomy, Springer-Verlag (2002). Zbl1041.85001MR1988785DOI10.1007/978-3-662-04917-4
  12. EFTHIMIOPOULOS, C. - SANDOR, Z., Optimized Nekhoroshev stability estimates for the Trojan asteroids with a symplectic mapping model of co-orbital motion, Mon. Not. R. Astron. Soc., (2005). 
  13. FERMI, E. - PASTA, J. - ULAM, S., Studies of nonlinear problems, Los Alamos document LA-1940 (1955). Zbl0353.70028
  14. GIORGILLI, A. - ZEHNDER, E., Exponential stability for time dependent potentials, ZAMP (1992). Zbl0766.58032MR1182784DOI10.1007/BF00913410
  15. GIORGILLI, A. - SKOKOS, Ch., On the stability of the Trojan asteroids, Astron. Astroph., 317 (1997), 254-261. 
  16. GIORGILLI, A., Notes on exponential stability of Hamiltonian systems, in Dynamical Systems, Part I: Hamiltonian systems and Celestial MechanicsPubblicazioni del Centro di Ricerca Matematica Ennio De Giorgi, Pisa (2003), 87-198. Zbl1081.37033MR2071233
  17. GUSTAVSON, F. G., On constructing formal integrals of a Hamiltonian system near an equilibrium point, Astron. J., 71 (1966), 670-686. 
  18. HENON, M. - HEILES, C., The applicability of the third integral of motion: some numerical experiments, Astron. J., 69 (1964), 73-79. MR158746DOI10.1086/109234
  19. KIRKWOOD, D., Proceedings of the American Association for the Advancement of Science for 1866. MR1568920
  20. KIRKWOOD, D., The zone of asteroids and the ring of Saturn, Astronomical Register, 22 (1884), 243-247. 
  21. KOLMOGOROV, A. N., Preservation of conditionally periodic movements with small change in the Hamilton function, Dokl. Akad. Nauk SSSR, 98 (1954), 527. Zbl0056.31502MR68687
  22. LASKAR, J., A numerical experiment on the chaotic behaviour of the solar system, Nature, 338 (1989), 237-238. 
  23. LASKAR, J., Large scale chaos in the solar system, Astron. Astroph., 287 (1994). Zbl1052.70547
  24. LITTLEWOOD, J. E., On the equilateral configuration in the restricted problem of three bodies, Proc. London Math. Soc. (3) 9 (1959), 343-372. Zbl0092.16802MR109077DOI10.1112/plms/s3-9.3.343
  25. LITTLEWOOD, J. E., The Lagrange configuration in celestial mechanics, Proc. London Math. Soc. (3) 9 (1959), 525-543. Zbl0093.17302MR1576803DOI10.1112/plms/s3-9.4.525
  26. LOCATELLI, U. - GIORGILLI, A., Invariant tori in the Sun-Jupiter-Saturn system, DCDS-B, 7 (2007), 377-398. Zbl1129.70015MR2276414DOI10.3934/dcdsb.2007.7.377
  27. LOCHAK, P., Canonical perturbation theory via simultaneous approximations, Usp. Math. Nauk.47 (1992), 59-140. English transl in Russ. Math. Surv. Zbl0795.58042MR1209145DOI10.1070/RM1992v047n06ABEH000965
  28. MILANI, A. - NOBILI, A. - CARPINO, M., Secular variations of the semimajor axes: theory and experiments, Astronomy and Astrophysics, 172 (1987), 265-269. Zbl0617.70009
  29. MOLTCHANOV, A., The resonant structure of the solar system, Icarus8 (1968), 203-215. 
  30. MORBIDELLI, A. - GIORGILLI, A., On the dynamics in the asteroids' belt. Part I: general theory, Cel. Mech.47 (1990), 145-172. Zbl0701.70010MR1050337DOI10.1007/BF00051203
  31. MORBIDELLI, A. - GIORGILLI, A., On the dynamics in the asteroids' belt. Part II: detailed study of the main resonances, Cel. Mech., 47 (1990), 173-204. Zbl0701.70011MR1050338DOI10.1007/BF00051204
  32. MORBIDELLI, A. - GIORGILLI, A., Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607-1617. MR1316113DOI10.1007/BF02180145
  33. MORBIDELLI, A., Modern celestial Mechanics. Aspects of solar system dynamics, Taylor & Francis, London (2002). 
  34. MOSER, J., Stabilitätsverhalten kanonisher differentialgleichungssysteme, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl IIa, nr. 6 (1955), 87-120. 
  35. MOSER, J., On invariant curves of area-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen, Math. Phys. Kl II (1962), 1-20. Zbl0107.29301
  36. MOSER, J., Stable and random motions in dynamical systems, Princeton University press, Princeton (1973). Zbl0271.70009
  37. MURRAY, N. - HOLMAN, M., The Origin of Chaos in Outer Solar System, Science, 283, Iss. 5409, 1877 (1999). 
  38. NEKHOROSHEV, N. N., Exponential estimates of the stability time of near-integrable Hamiltonian systems. Russ. Math. Surveys, 32 (1977), 1. Zbl0389.70028
  39. NEKHOROSHEV, N. N., Exponential estimates of the stability time of near-integrable Hamiltonian systems, 2. Trudy Sem. Petrovs., 5 (1979), 5. 
  40. ROBUTEL, P. - GABERN, F. - JORBA, A., The observed Trojans and the global dynamics around the Lagrangian points of the Sun-Jupiter system, Celest. Mech. Dyn. Astr., 92 (2005), 53-69. Zbl1083.70019
  41. ROELS, J. - HNON, M., Recherche des courbes invariantes d'une transformation ponctuelle plane conservant les aires, Bull. Astron., 32 (1967), 267-285. Zbl0171.22902
  42. SUSSMAN, G. J. - WISDOM, J., Numerical evidence that the motion of Pluto is chaotic, Science, 241 (1988), 433-437. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.