Sistemi integrabili infinito dimensionali e loro perturbazioni

Dario Bambusi; Alberto Maspero

Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2017)

  • Volume: 2, Issue: 3, page 309-326
  • ISSN: 2499-751X

Abstract

top
The last 50 years have seen enourmous advances in the comprehension of the qualitative behaviour of solutions of nonlinear partial differential equations. In particular the extension to this field of the methods of Hamiltonian mechanichs has been the key for the discovery of a full class of equations called ``integrable'', whose solutions always have a recurrent behaviour and has also allowed to shed some light on the solutions of perturbations of integrable equations, which can display both a recurrent and a turbulent behaviour. In this paper we will present some of the results of the theory from its beginning to our days and we will discuss some of the most important open problems.

How to cite

top

Bambusi, Dario, and Maspero, Alberto. "Sistemi integrabili infinito dimensionali e loro perturbazioni." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 2.3 (2017): 309-326. <http://eudml.org/doc/290399>.

@article{Bambusi2017,
abstract = {Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.},
author = {Bambusi, Dario, Maspero, Alberto},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {309-326},
publisher = {Unione Matematica Italiana},
title = {Sistemi integrabili infinito dimensionali e loro perturbazioni},
url = {http://eudml.org/doc/290399},
volume = {2},
year = {2017},
}

TY - JOUR
AU - Bambusi, Dario
AU - Maspero, Alberto
TI - Sistemi integrabili infinito dimensionali e loro perturbazioni
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2017/12//
PB - Unione Matematica Italiana
VL - 2
IS - 3
SP - 309
EP - 326
AB - Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.
LA - ita
UR - http://eudml.org/doc/290399
ER -

References

top
  1. ARNOLD, V. I.. Metodi Matematici della Meccanica Classica. Editori Riuniti, 1979. 
  2. ARNOLD, V. I.. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13-40, 1963. MR163025
  3. ARNOLD, V. I.. Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 156:9-12, 1964. MR163026
  4. BALDI, P., BERTI, M., and MONTALTO, R.. KAM for quasilinear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014. Zbl1350.37076MR3201904DOI10.1007/s00208-013-1001-7
  5. BAMBUSI, D., DELORT, J.-M., GRÉBERT, B., and SZEFTEL, J.. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60(11):1665-1690, 2007. Zbl1170.35481MR2349351DOI10.1002/cpa.20181
  6. BAMBUSI, D. and GRÉBERT, B.. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006. Zbl1110.37057MR2272975DOI10.1215/S0012-7094-06-13534-2
  7. BÄTTIG, D., BLOCH, A. M., GUILLOT, J.-C., and KAPPELER, T.. On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J., 79(3):549-604, 1995. Zbl0855.58035MR1355177DOI10.1215/S0012-7094-95-07914-9
  8. BERNARD, P., KALOSHIN, V., and ZHANG, K.. Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math., 217(1):1-79, 2016. Zbl1368.37068MR3646879DOI10.1007/s11511-016-0141-5
  9. BERTI, M., CORSI, L., and PROCESI, M.. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys., 334(3):1413-1454, 2015. Zbl1312.35157MR3312439DOI10.1007/s00220-014-2128-4
  10. BOURGAIN, J.. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 5(4):629-639, 1995. Zbl0834.35083MR1345016DOI10.1007/BF01902055
  11. BOURGAIN, J.. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2), 148(2):363-439, 1998. Zbl0928.35161MR1668547DOI10.2307/121001
  12. BOURGAIN, J.. Green's function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. MR2100420DOI10.1515/9781400837144
  13. BOUSSINESQ, J.. Essai sur la théorie des eaux courantes. Mémoires présentées par divers savants à l'Académie des Sciences. Imprimerie Nationale, 1877. 
  14. COLLIANDER, J., KEEL, M., STAFFILANI, G., TAKAOKA, H., and TAO, T.. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181(1):39-113, 2010. Zbl1197.35265MR2651381DOI10.1007/s00222-010-0242-2
  15. DAVIS, P. J., HERSH, R., and MARCHISOTTO, E. A.. The mathematical experience. Birkhäuser Boston, Inc., Boston, MA, study edition, 1995. With an introduction by Gian-Carlo Rota. Zbl0837.00001MR1347448
  16. DELORT, J.-M.. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. Zbl1315.35003MR3288855DOI10.1090/memo/1103
  17. DUBROVIN, B. A.. A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials. Funkcional. Anal. i Priložen., 9(3):41-51, 1975. MR486780
  18. DUBROVIN, B. A., MATVEEV, V. B., and NOVIKOV, S. P.. Nonlinear equations of Korteweg-de Vries type, finiteband linear operators and Abelian varieties. Uspehi Mat. Nauk, 31(1(187)):55-136, 1976. Zbl0326.35011MR427869
  19. DUBROVIN, B. A. and NOVIKOV, S. P.. Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Ž. Èksper. Teoret. Fiz., Z 67(6):2131-2144, 1974. MR382877
  20. ELIASSON, L. H. and KUKSIN, S. B.. KAM for the nonlinear Schrödinger equation. Ann. of Math. (2), 172(1):371-435, 2010. Zbl1201.35177MR2680422DOI10.4007/annals.2010.172.371
  21. FLASCHKA, H. and MCLAUGHLIN, D. W.. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55(2):438-456, 1976. Zbl1109.35374MR403368DOI10.1143/PTP.55.438
  22. GARNETT, J. and TRUBOWITZ, E.. Gaps and bands of onedimensional periodic Schrödinger operators. Comment. Math. Helv., 59(2):258-312, 1984. Zbl0554.34013MR749109DOI10.1007/BF02566350
  23. GÉRARD, P. and GRELLIER, S.. The cubic Szego equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761-810, 2010. Zbl1228.35225MR2721876
  24. GIORGILLI, A.. Quasiperiodic motions and stability of the solar system. I. From epicycles to Poincaré's homoclinic point. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(1):55-83, 2007. Zbl1277.70015MR2320481
  25. GIORGILLI, A.. Quasiperiodic motions and stability of the solar system. II. From Kolmogorov's tori to exponential stability. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(3):465-495, 614, 2007. MR2394380
  26. GUARDIA, M., HAUS, E., and PROCESI, M.. Growth of Sobolev norms for the analytic NLS on 𝕋 2 . Adv. Math., 301:615-692, 2016. Zbl1353.35260MR3539385DOI10.1016/j.aim.2016.06.018
  27. HANI, Z., PAUSADER, P., TZVETKOV, N. and VISCIGLIA, N.. Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum of Math. Pi, 3, 2015. Zbl1326.35348MR3406826DOI10.1017/fmp.2015.5
  28. HOCHSTADT, H.. Estimates of the stability intervals for Hill's equation. Proc. Amer. Math. Soc., 14:930-932, 1963. Zbl0122.09202MR156023DOI10.2307/2035029
  29. KAPPELER, T.. Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier (Grenoble), 41(3):539-575, 1991. Zbl0731.58033MR1136595
  30. KAPPELER, T. and PÖSCHEL, J.. KAM & KdV. Springer, 2003. MR1997070DOI10.1007/978-3-662-08054-2
  31. KAPPELER, T. and TOPALOV, P.. Global wellposedness of KdV in H - 1 ( 𝕋 ; ) . Duke Math. J., 135(2):327-360, 2006. Zbl1106.35081MR2267286DOI10.1215/S0012-7094-06-13524-X
  32. KOLMOGOROV, A. N.. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98:527-530, 1954. Zbl0056.31502MR68687
  33. KORTEWEG, D. D. J. and DE VRIES, D. G.. Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine Series 5, 39(240):422-443, 1895. Zbl26.0881.02MR3363408DOI10.1080/14786449508620739
  34. KUKSIN, S. B.. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987. Zbl0631.34069MR911772
  35. KUKSIN, S. B.. Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. Zbl0784.58028MR1290785DOI10.1007/BFb0092243
  36. LAX, P. D.. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467-490, 1968. Zbl0162.41103MR235310DOI10.1002/cpa.3160210503
  37. MARCENKO, V. A. and OSTROVSKI, I. V.. A characterization of the spectrum of hill's operator. Mathematics of the USSR-Sbornik, 26(4):493, 1975. MR409965
  38. MARCHENKO, V. A.. Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR897106DOI10.1007/978-3-0348-5485-6
  39. MCKEAN, H. P. and TRUBOWITZ, E.. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2):143-226, 1976. Zbl0339.34024MR427731DOI10.1002/cpa.3160290203
  40. MOSER, J.. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II, 1962:1-20, 1962. Zbl0107.29301MR147741
  41. NEKHOROSHEV, N. N.. Behavior of hamiltonian systems close to integrable. Functional Analysis and Its Applications, 5(4):338-339, 1971. Zbl0254.70015MR294813
  42. POINCARÉ, H.. Les méthodes nouvelles de la mécanique céleste: Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. 1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars et fils, 1892. Zbl24.1130.01MR926906
  43. PÖSCHEL, J.. A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):119-148, 1996. MR1401420
  44. SCHNEIDER, G. and WAYNE, C. E.. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000. Zbl1034.76011MR1780702DOI10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V
  45. SCOTT RUSSELL, J.. Report on waves, Fourteenth meeting of the British Association for the Advancement of Science, 1844. 
  46. TRUBOWITZ, E.. The inverse problem for periodic potentials. Comm. Pure Appl. Math., 30(3):321-337, 1977. Zbl0403.34022MR430403DOI10.1002/cpa.3160300305
  47. WAYNE, C. E.. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990. Zbl0708.35087MR1040892
  48. ZABUSKY, N. J. and KRUSKAL, M. D.. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240-243, Aug 1965. Zbl1201.35174

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.