Sistemi integrabili infinito dimensionali e loro perturbazioni
Dario Bambusi; Alberto Maspero
Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana (2017)
- Volume: 2, Issue: 3, page 309-326
- ISSN: 2499-751X
Access Full Article
topAbstract
topHow to cite
topBambusi, Dario, and Maspero, Alberto. "Sistemi integrabili infinito dimensionali e loro perturbazioni." Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana 2.3 (2017): 309-326. <http://eudml.org/doc/290399>.
@article{Bambusi2017,
abstract = {Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.},
author = {Bambusi, Dario, Maspero, Alberto},
journal = {Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {12},
number = {3},
pages = {309-326},
publisher = {Unione Matematica Italiana},
title = {Sistemi integrabili infinito dimensionali e loro perturbazioni},
url = {http://eudml.org/doc/290399},
volume = {2},
year = {2017},
}
TY - JOUR
AU - Bambusi, Dario
AU - Maspero, Alberto
TI - Sistemi integrabili infinito dimensionali e loro perturbazioni
JO - Matematica, Cultura e Società. Rivista dell'Unione Matematica Italiana
DA - 2017/12//
PB - Unione Matematica Italiana
VL - 2
IS - 3
SP - 309
EP - 326
AB - Durante gli ultimi 50 anni, sono stati fatti enormi progressi nella comprensione del comportamento qualitativo di equazioni a derivate parziali non lineari. In modo specifico, l'estensione a questo ambito dei metodi della meccanica Hamiltoniana ha permesso dapprima di capire che esiste un'intera classe di equazioni, chiamate ``integrabili'', le cui soluzioni hanno sempre carattere ricorrente, e successivamente di cominciare a comprendere ciò che avviene quando queste equazioni sono perturbate e danno luogo a sistemi in cui possono coesistere comportamenti regolari e comportamenti turbolenti. Nel nostro articolo, presenteremo alcuni dei risultati di questa teoria, a partire dalle sue origini fino a oggi, e discuteremo alcuni dei più importanti problemi aperti.
LA - ita
UR - http://eudml.org/doc/290399
ER -
References
top- ARNOLD, V. I.. Metodi Matematici della Meccanica Classica. Editori Riuniti, 1979.
- ARNOLD, V. I.. Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian. Uspehi Mat. Nauk, 18(5 (113)):13-40, 1963. MR163025
- ARNOLD, V. I.. Instability of dynamical systems with many degrees of freedom. Dokl. Akad. Nauk SSSR, 156:9-12, 1964. MR163026
- BALDI, P., BERTI, M., and MONTALTO, R.. KAM for quasilinear and fully nonlinear forced perturbations of Airy equation. Math. Ann., 359(1-2):471-536, 2014. Zbl1350.37076MR3201904DOI10.1007/s00208-013-1001-7
- BAMBUSI, D., DELORT, J.-M., GRÉBERT, B., and SZEFTEL, J.. Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on Zoll manifolds. Comm. Pure Appl. Math., 60(11):1665-1690, 2007. Zbl1170.35481MR2349351DOI10.1002/cpa.20181
- BAMBUSI, D. and GRÉBERT, B.. Birkhoff normal form for partial differential equations with tame modulus. Duke Math. J., 135(3):507-567, 2006. Zbl1110.37057MR2272975DOI10.1215/S0012-7094-06-13534-2
- BÄTTIG, D., BLOCH, A. M., GUILLOT, J.-C., and KAPPELER, T.. On the symplectic structure of the phase space for periodic KdV, Toda, and defocusing NLS. Duke Math. J., 79(3):549-604, 1995. Zbl0855.58035MR1355177DOI10.1215/S0012-7094-95-07914-9
- BERNARD, P., KALOSHIN, V., and ZHANG, K.. Arnold diffusion in arbitrary degrees of freedom and normally hyperbolic invariant cylinders. Acta Math., 217(1):1-79, 2016. Zbl1368.37068MR3646879DOI10.1007/s11511-016-0141-5
- BERTI, M., CORSI, L., and PROCESI, M.. An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds. Comm. Math. Phys., 334(3):1413-1454, 2015. Zbl1312.35157MR3312439DOI10.1007/s00220-014-2128-4
- BOURGAIN, J.. Construction of periodic solutions of nonlinear wave equations in higher dimension. Geom. Funct. Anal., 5(4):629-639, 1995. Zbl0834.35083MR1345016DOI10.1007/BF01902055
- BOURGAIN, J.. Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrödinger equations. Ann. of Math. (2), 148(2):363-439, 1998. Zbl0928.35161MR1668547DOI10.2307/121001
- BOURGAIN, J.. Green's function estimates for lattice Schrödinger operators and applications, volume 158 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2005. MR2100420DOI10.1515/9781400837144
- BOUSSINESQ, J.. Essai sur la théorie des eaux courantes. Mémoires présentées par divers savants à l'Académie des Sciences. Imprimerie Nationale, 1877.
- COLLIANDER, J., KEEL, M., STAFFILANI, G., TAKAOKA, H., and TAO, T.. Transfer of energy to high frequencies in the cubic defocusing nonlinear Schrödinger equation. Invent. Math., 181(1):39-113, 2010. Zbl1197.35265MR2651381DOI10.1007/s00222-010-0242-2
- DAVIS, P. J., HERSH, R., and MARCHISOTTO, E. A.. The mathematical experience. Birkhäuser Boston, Inc., Boston, MA, study edition, 1995. With an introduction by Gian-Carlo Rota. Zbl0837.00001MR1347448
- DELORT, J.-M.. Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres. Mem. Amer. Math. Soc., 234(1103):vi+80, 2015. Zbl1315.35003MR3288855DOI10.1090/memo/1103
- DUBROVIN, B. A.. A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials. Funkcional. Anal. i Priložen., 9(3):41-51, 1975. MR486780
- DUBROVIN, B. A., MATVEEV, V. B., and NOVIKOV, S. P.. Nonlinear equations of Korteweg-de Vries type, finiteband linear operators and Abelian varieties. Uspehi Mat. Nauk, 31(1(187)):55-136, 1976. Zbl0326.35011MR427869
- DUBROVIN, B. A. and NOVIKOV, S. P.. Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg-de Vries equation. Ž. Èksper. Teoret. Fiz., Z 67(6):2131-2144, 1974. MR382877
- ELIASSON, L. H. and KUKSIN, S. B.. KAM for the nonlinear Schrödinger equation. Ann. of Math. (2), 172(1):371-435, 2010. Zbl1201.35177MR2680422DOI10.4007/annals.2010.172.371
- FLASCHKA, H. and MCLAUGHLIN, D. W.. Canonically conjugate variables for the Korteweg-de Vries equation and the Toda lattice with periodic boundary conditions. Progr. Theoret. Phys., 55(2):438-456, 1976. Zbl1109.35374MR403368DOI10.1143/PTP.55.438
- GARNETT, J. and TRUBOWITZ, E.. Gaps and bands of onedimensional periodic Schrödinger operators. Comment. Math. Helv., 59(2):258-312, 1984. Zbl0554.34013MR749109DOI10.1007/BF02566350
- GÉRARD, P. and GRELLIER, S.. The cubic Szego equation. Ann. Sci. Éc. Norm. Supér. (4), 43(5):761-810, 2010. Zbl1228.35225MR2721876
- GIORGILLI, A.. Quasiperiodic motions and stability of the solar system. I. From epicycles to Poincaré's homoclinic point. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(1):55-83, 2007. Zbl1277.70015MR2320481
- GIORGILLI, A.. Quasiperiodic motions and stability of the solar system. II. From Kolmogorov's tori to exponential stability. Boll. Unione Mat. Ital. Sez. A Mat. Soc. Cult. (8), 10(3):465-495, 614, 2007. MR2394380
- GUARDIA, M., HAUS, E., and PROCESI, M.. Growth of Sobolev norms for the analytic NLS on . Adv. Math., 301:615-692, 2016. Zbl1353.35260MR3539385DOI10.1016/j.aim.2016.06.018
- HANI, Z., PAUSADER, P., TZVETKOV, N. and VISCIGLIA, N.. Modified scattering for the cubic Schrödinger equation on product spaces and applications. Forum of Math. Pi, 3, 2015. Zbl1326.35348MR3406826DOI10.1017/fmp.2015.5
- HOCHSTADT, H.. Estimates of the stability intervals for Hill's equation. Proc. Amer. Math. Soc., 14:930-932, 1963. Zbl0122.09202MR156023DOI10.2307/2035029
- KAPPELER, T.. Fibration of the phase space for the Korteweg-de Vries equation. Ann. Inst. Fourier (Grenoble), 41(3):539-575, 1991. Zbl0731.58033MR1136595
- KAPPELER, T. and PÖSCHEL, J.. KAM & KdV. Springer, 2003. MR1997070DOI10.1007/978-3-662-08054-2
- KAPPELER, T. and TOPALOV, P.. Global wellposedness of KdV in . Duke Math. J., 135(2):327-360, 2006. Zbl1106.35081MR2267286DOI10.1215/S0012-7094-06-13524-X
- KOLMOGOROV, A. N.. On conservation of conditionally periodic motions for a small change in Hamilton's function. Dokl. Akad. Nauk SSSR (N.S.), 98:527-530, 1954. Zbl0056.31502MR68687
- KORTEWEG, D. D. J. and DE VRIES, D. G.. Xli. on the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philosophical Magazine Series 5, 39(240):422-443, 1895. Zbl26.0881.02MR3363408DOI10.1080/14786449508620739
- KUKSIN, S. B.. Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum. Funktsional. Anal. i Prilozhen., 21(3):22-37, 95, 1987. Zbl0631.34069MR911772
- KUKSIN, S. B.. Nearly integrable infinite-dimensional Hamiltonian systems, volume 1556 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1993. Zbl0784.58028MR1290785DOI10.1007/BFb0092243
- LAX, P. D.. Integrals of nonlinear equations of evolution and solitary waves. Comm. Pure Appl. Math., 21:467-490, 1968. Zbl0162.41103MR235310DOI10.1002/cpa.3160210503
- MARCENKO, V. A. and OSTROVSKI, I. V.. A characterization of the spectrum of hill's operator. Mathematics of the USSR-Sbornik, 26(4):493, 1975. MR409965
- MARCHENKO, V. A.. Sturm-Liouville operators and applications, volume 22 of Operator Theory: Advances and Applications. Birkhäuser Verlag, Basel, 1986. Translated from the Russian by A. Iacob. MR897106DOI10.1007/978-3-0348-5485-6
- MCKEAN, H. P. and TRUBOWITZ, E.. Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points. Comm. Pure Appl. Math., 29(2):143-226, 1976. Zbl0339.34024MR427731DOI10.1002/cpa.3160290203
- MOSER, J.. On invariant curves of area-preserving mappings of an annulus. Nachr. Akad. Wiss. Göttingen Math.Phys. Kl. II, 1962:1-20, 1962. Zbl0107.29301MR147741
- NEKHOROSHEV, N. N.. Behavior of hamiltonian systems close to integrable. Functional Analysis and Its Applications, 5(4):338-339, 1971. Zbl0254.70015MR294813
- POINCARÉ, H.. Les méthodes nouvelles de la mécanique céleste: Solutions périodiques. Non-existence des intégrales uniformes. Solutions asymptotiques. 1892. Les méthodes nouvelles de la mécanique céleste. Gauthier-Villars et fils, 1892. Zbl24.1130.01MR926906
- PÖSCHEL, J.. A KAM-theorem for some nonlinear partial differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 23(1):119-148, 1996. MR1401420
- SCHNEIDER, G. and WAYNE, C. E.. The long-wave limit for the water wave problem. I. The case of zero surface tension. Comm. Pure Appl. Math., 53(12):1475-1535, 2000. Zbl1034.76011MR1780702DOI10.1002/1097-0312(200012)53:12<1475::AID-CPA1>3.0.CO;2-V
- SCOTT RUSSELL, J.. Report on waves, Fourteenth meeting of the British Association for the Advancement of Science, 1844.
- TRUBOWITZ, E.. The inverse problem for periodic potentials. Comm. Pure Appl. Math., 30(3):321-337, 1977. Zbl0403.34022MR430403DOI10.1002/cpa.3160300305
- WAYNE, C. E.. Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Comm. Math. Phys., 127(3):479-528, 1990. Zbl0708.35087MR1040892
- ZABUSKY, N. J. and KRUSKAL, M. D.. Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett., 15:240-243, Aug 1965. Zbl1201.35174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.