Degenerate Elliptic Equations and Morrey Spaces

Francesco Borrello

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 989-1011
  • ISSN: 0392-4033

Abstract

top
In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation L u X i * ( a i j X j u ) = f . where X 1 , X 2 , , X m are vector fields satisfying Hörmander condition and a i j L . We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case f 0 we are able to give necessary condition too.

How to cite

top

Borrello, Francesco. "Degenerate Elliptic Equations and Morrey Spaces." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 989-1011. <http://eudml.org/doc/290421>.

@article{Borrello2007,
abstract = {In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation \begin\{equation*\} Lu \equiv X^*\_i (a\_\{ij\}X\_ju)=f. \end\{equation*\} where $X_\{1\}, X_2, \ldots, X_m$ are vector fields satisfying Hörmander condition and $a_\{ij\}\in L^\infty$. We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case $f \geq 0$ we are able to give necessary condition too.},
author = {Borrello, Francesco},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {989-1011},
publisher = {Unione Matematica Italiana},
title = {Degenerate Elliptic Equations and Morrey Spaces},
url = {http://eudml.org/doc/290421},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Borrello, Francesco
TI - Degenerate Elliptic Equations and Morrey Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 989
EP - 1011
AB - In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation \begin{equation*} Lu \equiv X^*_i (a_{ij}X_ju)=f. \end{equation*} where $X_{1}, X_2, \ldots, X_m$ are vector fields satisfying Hörmander condition and $a_{ij}\in L^\infty$. We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case $f \geq 0$ we are able to give necessary condition too.
LA - eng
UR - http://eudml.org/doc/290421
ER -

References

top
  1. BALDI, A., A non-existence problem for degenerate elliptic PDE's, Comm. Partial Differential Equations, Communications in Partial Differential Equations, 25, 7-8 (2000), 1371-1398. MR1765139DOI10.1080/03605300008821552
  2. CANCELIER, C. - XU, C-J., Remarques sur les fonctions de Green associées aux opérateurs de Hörmander, C. R. Acad. Sci. Paris Sér. I Math., 330, 6 (2000), 433-436. Zbl0949.35023MR1756954DOI10.1016/S0764-4442(00)00145-2
  3. CAPOGNA, L. - DANIELLI, D. - GAROFALO, N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations, 18, 9-10 (1993), 1765-1794. Zbl0802.35024MR1239930DOI10.1080/03605309308820992
  4. CHEN, Y., Regularity of solutions to the Dirichlet problem for degenerate elliptic equation, Chinese Ann. Math. Ser. B, 24, 4 (2003), 529-540. Zbl1046.35019MR2024992DOI10.1142/S0252959903000530
  5. CHOW, W.-L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105. Zbl65.0398.01MR1880DOI10.1007/BF01450011
  6. CITTI, G. - GAROFALO, N. - LANCONELLI, E., Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115, 3 (1993), 699-734. Zbl0795.35018MR1221840DOI10.2307/2375077
  7. DANIELLI, D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 11 (1999), 387-413. Zbl0940.35057MR1719837DOI10.1023/A:1008674906902
  8. DI FAZIO, G., Poisson equations and Morrey spaces, J. Math. Anal. Appl., 163, 1 (1992), 157-167. Zbl0780.35020MR1144713DOI10.1016/0022-247X(92)90285-L
  9. DI FAZIO, G., Dirichlet problem characterization of regularity, Manuscripta Math., 84, 1 (1994), 47-56. Zbl0816.35009MR1283326DOI10.1007/BF02567442
  10. DI FAZIO, G. - ZAMBONI, P., Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr., 272 (2004), 3-10. Zbl1149.35347MR2079757DOI10.1002/mana.200310185
  11. FRANCHI, B. - LANCONELLI, E., Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10, 4 (1983), 523-541. Zbl0552.35032MR753153
  12. FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11, 1 (1997), 83-117. Zbl0952.49010MR1448000
  13. FRANCHI, B. - WHEEDEN, R. L., Compensation couples and isoperimetric estimates for vector fields, Colloq. Math., 74, 1 (1997), 9-27. Zbl0915.46028MR1455453DOI10.4064/cm-74-1-9-27
  14. GRÜTER, M. - WIDMAN, K.-O., The Green function for uniformly elliptic equations, Manuscripta Math., 37, 3 (1982), 303-342. Zbl0485.35031MR657523DOI10.1007/BF01166225
  15. KOHN, J. J. - NIRENBERG, L., Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. Zbl0125.33302MR181815DOI10.1002/cpa.3160180305
  16. LITTMAN, W. - STAMPACCHIA, G. - WEINBERGER, H. F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43-77. Zbl0116.30302MR161019
  17. LU, G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8, 3 (1992), 367-439. Zbl0804.35015MR1202416DOI10.4171/RMI/129
  18. NAGEL, A. - STEIN, E. M. - WAINGER, S., Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 1-2 (1985), 103-147. Zbl0578.32044MR793239DOI10.1007/BF02392539
  19. SÁNCHEZ-CALLE, A., Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math., 78, 1 (1984), 143-160. MR762360DOI10.1007/BF01388721
  20. STAMPACCHIA, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, 1 (1965), 189-258. Zbl0151.15401MR192177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.