Degenerate Elliptic Equations and Morrey Spaces
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 989-1011
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBorrello, Francesco. "Degenerate Elliptic Equations and Morrey Spaces." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 989-1011. <http://eudml.org/doc/290421>.
@article{Borrello2007,
abstract = {In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation \begin\{equation*\} Lu \equiv X^*\_i (a\_\{ij\}X\_ju)=f. \end\{equation*\} where $X_\{1\}, X_2, \ldots, X_m$ are vector fields satisfying Hörmander condition and $a_\{ij\}\in L^\infty$. We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case $f \geq 0$ we are able to give necessary condition too.},
author = {Borrello, Francesco},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {989-1011},
publisher = {Unione Matematica Italiana},
title = {Degenerate Elliptic Equations and Morrey Spaces},
url = {http://eudml.org/doc/290421},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Borrello, Francesco
TI - Degenerate Elliptic Equations and Morrey Spaces
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 989
EP - 1011
AB - In this paper we study local regularity for the generalized solution to the Dirichlet problem related to the equation \begin{equation*} Lu \equiv X^*_i (a_{ij}X_ju)=f. \end{equation*} where $X_{1}, X_2, \ldots, X_m$ are vector fields satisfying Hörmander condition and $a_{ij}\in L^\infty$. We give a representation formula for the generalized solution in terms of the Green function and thanks to suitable estimates we achieve our goal. In the case $f \geq 0$ we are able to give necessary condition too.
LA - eng
UR - http://eudml.org/doc/290421
ER -
References
top- BALDI, A., A non-existence problem for degenerate elliptic PDE's, Comm. Partial Differential Equations, Communications in Partial Differential Equations, 25, 7-8 (2000), 1371-1398. MR1765139DOI10.1080/03605300008821552
- CANCELIER, C. - XU, C-J., Remarques sur les fonctions de Green associées aux opérateurs de Hörmander, C. R. Acad. Sci. Paris Sér. I Math., 330, 6 (2000), 433-436. Zbl0949.35023MR1756954DOI10.1016/S0764-4442(00)00145-2
- CAPOGNA, L. - DANIELLI, D. - GAROFALO, N., An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Comm. Partial Differential Equations, 18, 9-10 (1993), 1765-1794. Zbl0802.35024MR1239930DOI10.1080/03605309308820992
- CHEN, Y., Regularity of solutions to the Dirichlet problem for degenerate elliptic equation, Chinese Ann. Math. Ser. B, 24, 4 (2003), 529-540. Zbl1046.35019MR2024992DOI10.1142/S0252959903000530
- CHOW, W.-L., Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann., 117 (1939), 98-105. Zbl65.0398.01MR1880DOI10.1007/BF01450011
- CITTI, G. - GAROFALO, N. - LANCONELLI, E., Harnack's inequality for sum of squares of vector fields plus a potential, Amer. J. Math., 115, 3 (1993), 699-734. Zbl0795.35018MR1221840DOI10.2307/2375077
- DANIELLI, D., A Fefferman-Phong type inequality and applications to quasilinear subelliptic equations, Potential Analysis, 11 (1999), 387-413. Zbl0940.35057MR1719837DOI10.1023/A:1008674906902
- DI FAZIO, G., Poisson equations and Morrey spaces, J. Math. Anal. Appl., 163, 1 (1992), 157-167. Zbl0780.35020MR1144713DOI10.1016/0022-247X(92)90285-L
- DI FAZIO, G., Dirichlet problem characterization of regularity, Manuscripta Math., 84, 1 (1994), 47-56. Zbl0816.35009MR1283326DOI10.1007/BF02567442
- DI FAZIO, G. - ZAMBONI, P., Hölder continuity for quasilinear subelliptic equations in Carnot Carathéodory spaces, Math. Nachr., 272 (2004), 3-10. Zbl1149.35347MR2079757DOI10.1002/mana.200310185
- FRANCHI, B. - LANCONELLI, E., Hölder regularity theorem for a class of linear nonuniformly elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 10, 4 (1983), 523-541. Zbl0552.35032MR753153
- FRANCHI, B. - SERAPIONI, R. - SERRA CASSANO, F., Approximation and imbedding theorems for weighted Sobolev spaces associated with Lipschitz continuous vector fields, Boll. Un. Mat. Ital. B (7), 11, 1 (1997), 83-117. Zbl0952.49010MR1448000
- FRANCHI, B. - WHEEDEN, R. L., Compensation couples and isoperimetric estimates for vector fields, Colloq. Math., 74, 1 (1997), 9-27. Zbl0915.46028MR1455453DOI10.4064/cm-74-1-9-27
- GRÜTER, M. - WIDMAN, K.-O., The Green function for uniformly elliptic equations, Manuscripta Math., 37, 3 (1982), 303-342. Zbl0485.35031MR657523DOI10.1007/BF01166225
- KOHN, J. J. - NIRENBERG, L., Non-coercive boundary value problems, Comm. Pure Appl. Math., 18 (1965), 443-492. Zbl0125.33302MR181815DOI10.1002/cpa.3160180305
- LITTMAN, W. - STAMPACCHIA, G. - WEINBERGER, H. F., Regular points for elliptic equations with discontinuous coefficients, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 43-77. Zbl0116.30302MR161019
- LU, G., Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications, Rev. Mat. Iberoamericana, 8, 3 (1992), 367-439. Zbl0804.35015MR1202416DOI10.4171/RMI/129
- NAGEL, A. - STEIN, E. M. - WAINGER, S., Balls and metrics defined by vector fields. I. Basic properties, Acta Math., 155, 1-2 (1985), 103-147. Zbl0578.32044MR793239DOI10.1007/BF02392539
- SÁNCHEZ-CALLE, A., Fundamental solutions and geometry of the sum of squares of vector fields, Invent. Math., 78, 1 (1984), 143-160. MR762360DOI10.1007/BF01388721
- STAMPACCHIA, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, 1 (1965), 189-258. Zbl0151.15401MR192177
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.