A Generalization of Quasi-Hamiltonian Groups

Eleonora Crestani

Bollettino dell'Unione Matematica Italiana (2007)

  • Volume: 10-B, Issue: 3, page 829-842
  • ISSN: 0392-4033

Abstract

top
Iwasawa classifies finite groups G in which all subgroups V are per- mutable, that is UV =VU for all subgroups U of G. These groups are called quasi- hamiltonian. We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable sub-groups.

How to cite

top

Crestani, Eleonora. "A Generalization of Quasi-Hamiltonian Groups." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 829-842. <http://eudml.org/doc/290446>.

@article{Crestani2007,
abstract = {Iwasawa classifies finite groups G in which all subgroups V are per- mutable, that is UV =VU for all subgroups U of G. These groups are called quasi- hamiltonian. We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable sub-groups.},
author = {Crestani, Eleonora},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {829-842},
publisher = {Unione Matematica Italiana},
title = {A Generalization of Quasi-Hamiltonian Groups},
url = {http://eudml.org/doc/290446},
volume = {10-B},
year = {2007},
}

TY - JOUR
AU - Crestani, Eleonora
TI - A Generalization of Quasi-Hamiltonian Groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 829
EP - 842
AB - Iwasawa classifies finite groups G in which all subgroups V are per- mutable, that is UV =VU for all subgroups U of G. These groups are called quasi- hamiltonian. We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable sub-groups.
LA - eng
UR - http://eudml.org/doc/290446
ER -

References

top
  1. BRANDL, R., Groups with few non-normal subgroups, Comm. in Algebra, 23, no. 6 (1995), 2091-2098. Zbl0830.20042MR1327124DOI10.1080/00927879508825330
  2. SCHMIDT, R., Subgroup Lattices of Groups, de Gruyter Exposition in Mathematics, 14, Walter de Gruyter & Co., Berlin, 1994. Zbl0843.20003MR1292462DOI10.1515/9783110868647
  3. SUZUKI, M., Group Theory I, Gundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247, Springer-Verlag, Berlin-New York, 1982. MR648772
  4. SUZUKI, M., Group Theory II, Gundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 248, Springer-Verlag, New York, 1986. MR815926DOI10.1007/978-3-642-86885-6
  5. ZAPPA, G., Finite groups in which all non normal subgroups have the same order (italian), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.13, no. 1 (2002), 5-16. Zbl1097.20020MR1949144
  6. ZAPPA, G., Finite groups in which all non normal subgroups have the same order II (italian), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.14, no. 1 (2003), 13-21. Zbl1162.20304MR2057271

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.