A Generalization of Quasi-Hamiltonian Groups
Bollettino dell'Unione Matematica Italiana (2007)
- Volume: 10-B, Issue: 3, page 829-842
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topCrestani, Eleonora. "A Generalization of Quasi-Hamiltonian Groups." Bollettino dell'Unione Matematica Italiana 10-B.3 (2007): 829-842. <http://eudml.org/doc/290446>.
@article{Crestani2007,
abstract = {Iwasawa classifies finite groups G in which all subgroups V are per- mutable, that is UV =VU for all subgroups U of G. These groups are called quasi- hamiltonian. We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable sub-groups.},
author = {Crestani, Eleonora},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {829-842},
publisher = {Unione Matematica Italiana},
title = {A Generalization of Quasi-Hamiltonian Groups},
url = {http://eudml.org/doc/290446},
volume = {10-B},
year = {2007},
}
TY - JOUR
AU - Crestani, Eleonora
TI - A Generalization of Quasi-Hamiltonian Groups
JO - Bollettino dell'Unione Matematica Italiana
DA - 2007/10//
PB - Unione Matematica Italiana
VL - 10-B
IS - 3
SP - 829
EP - 842
AB - Iwasawa classifies finite groups G in which all subgroups V are per- mutable, that is UV =VU for all subgroups U of G. These groups are called quasi- hamiltonian. We classify the finite groups whose non-permutable subgroups have the same order and the ones which have a single conjugacy class of non-permutable sub-groups.
LA - eng
UR - http://eudml.org/doc/290446
ER -
References
top- BRANDL, R., Groups with few non-normal subgroups, Comm. in Algebra, 23, no. 6 (1995), 2091-2098. Zbl0830.20042MR1327124DOI10.1080/00927879508825330
- SCHMIDT, R., Subgroup Lattices of Groups, de Gruyter Exposition in Mathematics, 14, Walter de Gruyter & Co., Berlin, 1994. Zbl0843.20003MR1292462DOI10.1515/9783110868647
- SUZUKI, M., Group Theory I, Gundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 247, Springer-Verlag, Berlin-New York, 1982. MR648772
- SUZUKI, M., Group Theory II, Gundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 248, Springer-Verlag, New York, 1986. MR815926DOI10.1007/978-3-642-86885-6
- ZAPPA, G., Finite groups in which all non normal subgroups have the same order (italian), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.13, no. 1 (2002), 5-16. Zbl1097.20020MR1949144
- ZAPPA, G., Finite groups in which all non normal subgroups have the same order II (italian), Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl.14, no. 1 (2003), 13-21. Zbl1162.20304MR2057271
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.