Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods

Angelo Alvino; Anna Mercaldo

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 3, page 645-661
  • ISSN: 0392-4041

Abstract

top
We consider the homogeneous Dirichlet problem for nonlinear elliptic equations as - div a ( x , u ) = b ( x , u ) + μ where μ is a measure with bounded total variation. We fix structural conditions on functions a , b which ensure existence of solutions. Moreover, if μ is an L 1 function, we prove a uniqueness result under more restrictive hypotheses on the operator.

How to cite

top

Alvino, Angelo, and Mercaldo, Anna. "Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 645-661. <http://eudml.org/doc/290453>.

@article{Alvino2008,
abstract = {We consider the homogeneous Dirichlet problem for nonlinear elliptic equations as \begin\{equation*\}-\operatorname\{div\} a(x, \nabla u) = b(x, \nabla u) + \mu \end\{equation*\} where $\mu$ is a measure with bounded total variation. We fix structural conditions on functions $a$, $b$ which ensure existence of solutions. Moreover, if $\mu$ is an $L^1$ function, we prove a uniqueness result under more restrictive hypotheses on the operator.},
author = {Alvino, Angelo, Mercaldo, Anna},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {645-661},
publisher = {Unione Matematica Italiana},
title = {Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods},
url = {http://eudml.org/doc/290453},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Alvino, Angelo
AU - Mercaldo, Anna
TI - Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 645
EP - 661
AB - We consider the homogeneous Dirichlet problem for nonlinear elliptic equations as \begin{equation*}-\operatorname{div} a(x, \nabla u) = b(x, \nabla u) + \mu \end{equation*} where $\mu$ is a measure with bounded total variation. We fix structural conditions on functions $a$, $b$ which ensure existence of solutions. Moreover, if $\mu$ is an $L^1$ function, we prove a uniqueness result under more restrictive hypotheses on the operator.
LA - eng
UR - http://eudml.org/doc/290453
ER -

References

top
  1. ALVINO, A. - MERCALDO, A., Nonlinear elliptic problems with L 1 data: an approach via symmetrization methods, Mediterr. J. Math. (to appear) Zbl1172.35400MR2427392DOI10.1007/s00009-008-0142-5
  2. ALVINO, A. - TROMBETTI, G., Su una classe di equazioni ellittiche degeneri, Ricerche Mat., 29 (1980), 193-212. MR632208
  3. BÉNILAN, PH. - BOCCARDO, L. - GALLOUËT, TH. - GARIEPY, R. - PIERRE, M., - VÁZQUEZ, J.L., An L 1 theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 22 (1995), 241-273. MR1354907
  4. BETTA, M.F. - MERCALDO, A. - MURAT, F. - PORZIO, M.M., Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L 1 . A tribute to J.L. Lions. (electronic), ESAIM Control Optim. Calc. Var., 8 (2002), 239-272. Zbl1092.35032MR1932952DOI10.1051/cocv:2002051
  5. BETTA, M.F. - MERCALDO, A. - MURAT, F. - PORZIO, M.M., Existence of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side measure, J. Math. Pures Appl., 82 (2003), 90-124. Zbl1092.35032MR1967494DOI10.1016/S0021-7824(03)00006-0
  6. BETTA, M.F. - FERONE, V. - MERCALDO, A., Regularity for solutions of nonlinear elliptic equations, Bull. Sci. Math., 118 (1994), 539-567. Zbl0842.35014MR1309088
  7. BOCCARDO, L. - GALLOUËT, TH., Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149-169. MR1025884DOI10.1016/0022-1236(89)90005-0
  8. BOCCARDO, L. - GALLOUËT, T., Nonlinear elliptic equations with right hand side measures, Comm. Partial Differential Equations, 17 (1992), 641-655. Zbl0812.35043MR1163440DOI10.1080/03605309208820857
  9. CASADO-DIAZ, J. - MURAT, F. - PORRETTA, A., Uniqueness results for pseudomonotone problems with p > 2 , C.R. Acad. Sci. Paris, Ser. I, 344(2007), 487-492. Zbl1118.35307MR2324483DOI10.1016/j.crma.2007.02.007
  10. DALL'AGLIO, A., Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations, Ann. Mat. Pura Appl., 170 (1996), 207-240. MR1441620DOI10.1007/BF01758989
  11. DAL MASO, G. - MURAT, F. - ORSINA, L. - PRIGNET, A., Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Sup. Pisa Cl. Sci. , (4) 28, (1999), 741-808. Zbl0958.35045MR1760541
  12. DEL VECCHIO, T., Nonlinear elliptic equations with measure data, Potential Anal., 4 (1995), 185-203. Zbl0815.35023MR1323826DOI10.1007/BF01275590
  13. DEL VECCHIO, T. - PORZIO, M.M., Existence results for a class of non coercive Dirichlet problems, Ricerche Mat., 44 (1995), 421-438. Zbl0925.35067MR1469712
  14. FERONE, A. - VOLPICELLI, R., Some relations between pseudo-rearrangement and relative rearrangement, Nonlinear Anal., 41, (2000), 855-869. Zbl1008.28003MR1764024DOI10.1016/S0362-546X(98)00313-7
  15. HARDY, G.H. - LITTLEWOOD, J.E. - POLYA, G., Inequalities, Cambridge University Press, Cambridge, (1964). MR944909
  16. HUNT, R., On L ( p , q ) spaces, Enseignement Math., 12 (1966), 249-276. MR223874
  17. KRASNOSEL'SKII, M. A., Topologicol methods in the theory of nonlinear integral equations, Pergamon Press, New York, (1964). MR159197
  18. LIONS, J.L., Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, (1969). Zbl0189.40603MR259693
  19. LIONS, P.L. - MURAT, F., Sur les solutions renormalisées d'équations elliptiques non linéaires, manuscript. 
  20. MAZ'YA, V.G., On weak solutions of the Dirichlet and Neumann problems, Trans. Moscow Math. Soc., 20 (1969), 135-172. 
  21. MURAT, F., Équations elliptiques non linéaires avec second membre L 1 ou mesure, Actes du 26ème Congrés National d'Analyse Numérique, Les Karellis, France (1994), A12-A24. 
  22. O'NEIL, R., Integral transform and tensor products on Orlicz spaces and L ( p , q ) spaces, J. Analyse Math., 21 (1968), 1-276. MR626853
  23. RAKOTOSON, J.M. - TEMAM, R., Relative rearrangement in quasilinear elliptic variational inequalities, Indiana Univ. Math. J., 36 (1987), 757-810. MR916743DOI10.1512/iumj.1987.36.36043
  24. SERRIN, J., Pathological solution of elliptic differential equations, Ann. Scuola. Norm. Sup. Pisa, (3) 18 (1964), 385-387. Zbl0142.37601MR170094
  25. STAMPACCHIA, G., Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-258. Zbl0151.15401MR192177
  26. TALENTI, G., Nonlinear elliptic equations, rearrangements of functions and Orlicz spaces. Ann. Mat. Pura Appl., 120 (1979), 160-184. Zbl0419.35041MR551065DOI10.1007/BF02411942
  27. TALENTI, G., Linear elliptic P.D.E.'s: Level sets, rearrangements and a priori estimates of solutions, Boll. Un. Mat., 4-B (1985), 917-949. Zbl0602.35025MR831299

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.