Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in L 1 ( Ω )

M. F. Betta; A. Mercaldo; F. Murat; M. M. Porzio

ESAIM: Control, Optimisation and Calculus of Variations (2002)

  • Volume: 8, page 239-272
  • ISSN: 1292-8119

Abstract

top
In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is - div ( a ( x ) ( 1 + | u | 2 ) p - 2 2 u ) + b ( x ) ( 1 + | u | 2 ) λ 2 = f in Ω , u = 0 on Ω , where Ω is a bounded open subset of N , N 2 , 2 - 1 / N < p < N , a belongs to L ( Ω ) , a ( x ) α 0 > 0 , f is a function in L 1 ( Ω ) , b is a function in L r ( Ω ) and 0 λ < λ * ( N , p , r ) , for some r and λ * ( N , p , r ) .

How to cite

top

Betta, M. F., et al. "Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in $L^1(\Omega )$." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 239-272. <http://eudml.org/doc/245921>.

@article{Betta2002,
abstract = {In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is\[ \{\left\lbrace \begin\{array\}\{ll\} - \operatorname\{div\}( a(x)(1+|\nabla u|^\{2\})^\{\frac\{p-2\}\{2\}\}\nabla u) +b(x)(1+|\nabla u|^\{2\})^\{\frac\{\lambda \}\{2\}\} =f &\text\{in\} \Omega ,\\ u=0 &\text\{on\} \partial \Omega , \end\{array\}\right.\} \]where $\Omega $ is a bounded open subset of $\{\mathbb \{R\}\}^N$, $N\ge 2$, $2-1/N&lt; p&lt; N$, $a$ belongs to $L^\{\infty \}(\Omega )$, $a(x) \ge \alpha _0&gt;0$, $f$ is a function in $L^1(\Omega ) $, $b$ is a function in $L^r(\Omega )$ and $0\le \lambda &lt;\lambda ^*(N,p,r),$ for some $r$ and $\lambda ^*(N,p,r)$.},
author = {Betta, M. F., Mercaldo, A., Murat, F., Porzio, M. M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {uniqueness; nonlinear elliptic equations; noncoercive problems; data in $L^1$; data in },
language = {eng},
pages = {239-272},
publisher = {EDP-Sciences},
title = {Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in $L^1(\Omega )$},
url = {http://eudml.org/doc/245921},
volume = {8},
year = {2002},
}

TY - JOUR
AU - Betta, M. F.
AU - Mercaldo, A.
AU - Murat, F.
AU - Porzio, M. M.
TI - Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in $L^1(\Omega )$
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 239
EP - 272
AB - In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is\[ {\left\lbrace \begin{array}{ll} - \operatorname{div}( a(x)(1+|\nabla u|^{2})^{\frac{p-2}{2}}\nabla u) +b(x)(1+|\nabla u|^{2})^{\frac{\lambda }{2}} =f &\text{in} \Omega ,\\ u=0 &\text{on} \partial \Omega , \end{array}\right.} \]where $\Omega $ is a bounded open subset of ${\mathbb {R}}^N$, $N\ge 2$, $2-1/N&lt; p&lt; N$, $a$ belongs to $L^{\infty }(\Omega )$, $a(x) \ge \alpha _0&gt;0$, $f$ is a function in $L^1(\Omega ) $, $b$ is a function in $L^r(\Omega )$ and $0\le \lambda &lt;\lambda ^*(N,p,r),$ for some $r$ and $\lambda ^*(N,p,r)$.
LA - eng
KW - uniqueness; nonlinear elliptic equations; noncoercive problems; data in $L^1$; data in
UR - http://eudml.org/doc/245921
ER -

References

top
  1. [1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An L 1 -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241-273. Zbl0866.35037MR1354907
  2. [2] M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum. C. R. Acad. Sci. Paris Sér. I Math. 332 (to appear). Zbl1016.35026MR1905035
  3. [3] M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side measure. J. Math. Pures Appl. (to appear). Zbl1165.35365MR1912411
  4. [4] M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term (to appear). Zbl1125.35343MR2165494
  5. [5] L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 539-551. Zbl0857.35126MR1409661
  6. [6] G. Bottaro and M.E. Marina, Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati. Boll. Un. Mat. Ital. 8 (1973) 46-56. Zbl0291.35021MR326148
  7. [7] A. Dall’Aglio, Approximated solutions of equations with L 1 data. Application to the H -convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170 (1996) 207-240. Zbl0869.35050
  8. [8] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741-808. Zbl0958.35045MR1760541
  9. [9] G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of n -Laplace type with measure valued right-hand side. J. Reine Angew. Math. 520 (2000) 1-35. Zbl0937.35065MR1748270
  10. [10] A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right-hand side in L 1 ( Ω ) . Studia Math. 127 (1998) 223-231. Zbl0891.35039MR1489454
  11. [11] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math. 92 (1997) 249-258. Zbl0869.35037MR1428651
  12. [12] O. Guibé, Remarks on the uniqueness of comparable renormalized solutions of elliptic equations with measure data. Ann. Mat. Pura Appl. Ser. IV 180 (2002) 441-449. Zbl1072.35074MR1877627
  13. [13] P.-L. Lions and F. Murat, Solutions renormalisées d’équations elliptiques non linéaires (to appear). 
  14. [14] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023. Laboratoire d’Analyse Numérique de l’Université Paris VI (1993). 
  15. [15] F. Murat, Équations elliptiques non linéaires avec second membre L 1 ou mesure, in Actes du 26 e Congrès National d’Analyse Numérique. Les Karellis, France (1994) A12-A24. 
  16. [16] A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rend. Mat. Appl. 15 (1995) 321-337. Zbl0843.35127MR1362776
  17. [17] J. Serrin, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 385-387. Zbl0142.37601MR170094
  18. [18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258. Zbl0151.15401MR192177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.