Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in
M. F. Betta; A. Mercaldo; F. Murat; M. M. Porzio
ESAIM: Control, Optimisation and Calculus of Variations (2002)
- Volume: 8, page 239-272
- ISSN: 1292-8119
Access Full Article
topAbstract
topHow to cite
topBetta, M. F., et al. "Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in $L^1(\Omega )$." ESAIM: Control, Optimisation and Calculus of Variations 8 (2002): 239-272. <http://eudml.org/doc/245921>.
@article{Betta2002,
abstract = {In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is\[ \{\left\lbrace \begin\{array\}\{ll\} - \operatorname\{div\}( a(x)(1+|\nabla u|^\{2\})^\{\frac\{p-2\}\{2\}\}\nabla u) +b(x)(1+|\nabla u|^\{2\})^\{\frac\{\lambda \}\{2\}\} =f &\text\{in\} \Omega ,\\ u=0 &\text\{on\} \partial \Omega , \end\{array\}\right.\} \]where $\Omega $ is a bounded open subset of $\{\mathbb \{R\}\}^N$, $N\ge 2$, $2-1/N< p< N$, $a$ belongs to $L^\{\infty \}(\Omega )$, $a(x) \ge \alpha _0>0$, $f$ is a function in $L^1(\Omega ) $, $b$ is a function in $L^r(\Omega )$ and $0\le \lambda <\lambda ^*(N,p,r),$ for some $r$ and $\lambda ^*(N,p,r)$.},
author = {Betta, M. F., Mercaldo, A., Murat, F., Porzio, M. M.},
journal = {ESAIM: Control, Optimisation and Calculus of Variations},
keywords = {uniqueness; nonlinear elliptic equations; noncoercive problems; data in $L^1$; data in },
language = {eng},
pages = {239-272},
publisher = {EDP-Sciences},
title = {Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in $L^1(\Omega )$},
url = {http://eudml.org/doc/245921},
volume = {8},
year = {2002},
}
TY - JOUR
AU - Betta, M. F.
AU - Mercaldo, A.
AU - Murat, F.
AU - Porzio, M. M.
TI - Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in $L^1(\Omega )$
JO - ESAIM: Control, Optimisation and Calculus of Variations
PY - 2002
PB - EDP-Sciences
VL - 8
SP - 239
EP - 272
AB - In this paper we prove uniqueness results for the renormalized solution, if it exists, of a class of non coercive nonlinear problems whose prototype is\[ {\left\lbrace \begin{array}{ll} - \operatorname{div}( a(x)(1+|\nabla u|^{2})^{\frac{p-2}{2}}\nabla u) +b(x)(1+|\nabla u|^{2})^{\frac{\lambda }{2}} =f &\text{in} \Omega ,\\ u=0 &\text{on} \partial \Omega , \end{array}\right.} \]where $\Omega $ is a bounded open subset of ${\mathbb {R}}^N$, $N\ge 2$, $2-1/N< p< N$, $a$ belongs to $L^{\infty }(\Omega )$, $a(x) \ge \alpha _0>0$, $f$ is a function in $L^1(\Omega ) $, $b$ is a function in $L^r(\Omega )$ and $0\le \lambda <\lambda ^*(N,p,r),$ for some $r$ and $\lambda ^*(N,p,r)$.
LA - eng
KW - uniqueness; nonlinear elliptic equations; noncoercive problems; data in $L^1$; data in
UR - http://eudml.org/doc/245921
ER -
References
top- [1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre and J.L. Vazquez, An -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995) 241-273. Zbl0866.35037MR1354907
- [2] M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence and uniqueness results for nonlinear elliptic problems with a lower order term and measure datum. C. R. Acad. Sci. Paris Sér. I Math. 332 (to appear). Zbl1016.35026MR1905035
- [3] M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Existence of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side measure. J. Math. Pures Appl. (to appear). Zbl1165.35365MR1912411
- [4] M.F. Betta, A. Mercaldo, F. Murat and M.M. Porzio, Uniqueness results for nonlinear elliptic equations with a lower order term (to appear). Zbl1125.35343MR2165494
- [5] L. Boccardo, T. Gallouët and L. Orsina, Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data. Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 539-551. Zbl0857.35126MR1409661
- [6] G. Bottaro and M.E. Marina, Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati. Boll. Un. Mat. Ital. 8 (1973) 46-56. Zbl0291.35021MR326148
- [7] A. Dall’Aglio, Approximated solutions of equations with data. Application to the -convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170 (1996) 207-240. Zbl0869.35050
- [8] G. Dal Maso, F. Murat, L. Orsina and A. Prignet, Renormalized solutions for elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999) 741-808. Zbl0958.35045MR1760541
- [9] G. Dolzmann, N. Hungerbühler and S. Müller, Uniqueness and maximal regularity for nonlinear elliptic systems of -Laplace type with measure valued right-hand side. J. Reine Angew. Math. 520 (2000) 1-35. Zbl0937.35065MR1748270
- [10] A. Fiorenza and C. Sbordone, Existence and uniqueness results for solutions of nonlinear equations with right-hand side in . Studia Math. 127 (1998) 223-231. Zbl0891.35039MR1489454
- [11] L. Greco, T. Iwaniec and C. Sbordone, Inverting the p-harmonic operator. Manuscripta Math. 92 (1997) 249-258. Zbl0869.35037MR1428651
- [12] O. Guibé, Remarks on the uniqueness of comparable renormalized solutions of elliptic equations with measure data. Ann. Mat. Pura Appl. Ser. IV 180 (2002) 441-449. Zbl1072.35074MR1877627
- [13] P.-L. Lions and F. Murat, Solutions renormalisées d’équations elliptiques non linéaires (to appear).
- [14] F. Murat, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023. Laboratoire d’Analyse Numérique de l’Université Paris VI (1993).
- [15] F. Murat, Équations elliptiques non linéaires avec second membre ou mesure, in Actes du 26 Congrès National d’Analyse Numérique. Les Karellis, France (1994) A12-A24.
- [16] A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right-hand side measures. Rend. Mat. Appl. 15 (1995) 321-337. Zbl0843.35127MR1362776
- [17] J. Serrin, Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 18 (1964) 385-387. Zbl0142.37601MR170094
- [18] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15 (1965) 189-258. Zbl0151.15401MR192177
Citations in EuDML Documents
top- Guy Barles, Alessio Porretta, Uniqueness for unbounded solutions to stationary viscous Hamilton-Jacobi equations
- Angelo Alvino, Anna Mercaldo, Nonlinear Elliptic Equations with Lower Order Terms and Symmetrization Methods
- David Arcoya, Sergio Segura de León, Uniqueness of solutions for some elliptic equations with a quadratic gradient term
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.