The permutation group method for the dilogarithm

Georges Rhin[1]; Carlo Viola[2]

  • [1] Département de Mathématiques UFR MIM Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France
  • [2] Dipartimento di Matematica Università di Pisa Largo B. Pontecorvo 5 56127 Pisa, Italy

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2005)

  • Volume: 4, Issue: 3, page 389-437
  • ISSN: 0391-173X

Abstract

top
We give qualitative and quantitative improvements on all the best previously known irrationality results for dilogarithms of positive rational numbers. We obtain such improvements by applying our permutation group method to the diophantine study of double integrals of rational functions related to the dilogarithm.

How to cite

top

Rhin, Georges, and Viola, Carlo. "The permutation group method for the dilogarithm." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 4.3 (2005): 389-437. <http://eudml.org/doc/84565>.

@article{Rhin2005,
abstract = {We give qualitative and quantitative improvements on all the best previously known irrationality results for dilogarithms of positive rational numbers. We obtain such improvements by applying our permutation group method to the diophantine study of double integrals of rational functions related to the dilogarithm.},
affiliation = {Département de Mathématiques UFR MIM Université de Metz Ile du Saulcy 57045 Metz Cedex 01, France; Dipartimento di Matematica Università di Pisa Largo B. Pontecorvo 5 56127 Pisa, Italy},
author = {Rhin, Georges, Viola, Carlo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {389-437},
publisher = {Scuola Normale Superiore, Pisa},
title = {The permutation group method for the dilogarithm},
url = {http://eudml.org/doc/84565},
volume = {4},
year = {2005},
}

TY - JOUR
AU - Rhin, Georges
AU - Viola, Carlo
TI - The permutation group method for the dilogarithm
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2005
PB - Scuola Normale Superiore, Pisa
VL - 4
IS - 3
SP - 389
EP - 437
AB - We give qualitative and quantitative improvements on all the best previously known irrationality results for dilogarithms of positive rational numbers. We obtain such improvements by applying our permutation group method to the diophantine study of double integrals of rational functions related to the dilogarithm.
LA - eng
UR - http://eudml.org/doc/84565
ER -

References

top
  1. [1] F. Beukers, A note on the irrationality of ζ ( 2 ) and ζ ( 3 ) , Bull. London Math. Soc. 11 (1979), 268-272. Zbl0421.10023MR554391
  2. [2] E. Bombieri, On G -functions, In: “Recent Progress in Analytic Number Theory”, H. Halberstam and C. Hooley (eds.), Durham, 1979, Academic Press, London-New York, 1981, vol. 2, 1-67. Zbl0461.10031MR637359
  3. [3] M. Hata, Rational approximations to the dilogarithm, Trans. Amer. Math. Soc. 336 (1993), 363-387. Zbl0768.11022MR1147401
  4. [4] G. Rhin and C. Viola, On a permutation group related to ζ ( 2 ) , Acta Arith. 77 (1996), 23-56. Zbl0864.11037MR1404975
  5. [5] G. Rhin and C. Viola, The group structure for ζ ( 3 ) , Acta Arith. 97 (2001), 269-293. Zbl1004.11042MR1826005
  6. [6] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., 1929, n. 1; Gesammelte Abhandlungen, Band I, Springer-Verlag, Berlin-Heidelberg, 1966, 209-266. Zbl56.0180.05JFM56.0180.05
  7. [7] C. Viola, On Siegel’s method in diophantine approximation to transcendental numbers, Rend. Sem. Mat. Univ. Pol. Torino 53 (1995), 455-469. Zbl0873.11043MR1452398

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.