Comparison Principles for Subelliptic Equations of Monge-Ampère Type

Martino Bardi; Paola Mannucci

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 2, page 489-495
  • ISSN: 0392-4041

Abstract

top
We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.

How to cite

top

Bardi, Martino, and Mannucci, Paola. "Comparison Principles for Subelliptic Equations of Monge-Ampère Type." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 489-495. <http://eudml.org/doc/290456>.

@article{Bardi2008,
abstract = {We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.},
author = {Bardi, Martino, Mannucci, Paola},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {489-495},
publisher = {Unione Matematica Italiana},
title = {Comparison Principles for Subelliptic Equations of Monge-Ampère Type},
url = {http://eudml.org/doc/290456},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Bardi, Martino
AU - Mannucci, Paola
TI - Comparison Principles for Subelliptic Equations of Monge-Ampère Type
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 489
EP - 495
AB - We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.
LA - eng
UR - http://eudml.org/doc/290456
ER -

References

top
  1. BARDI, M. - MANNUCCI, P., On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal., 5 (2006), 709-731. Zbl1142.35041MR2246004DOI10.3934/cpaa.2006.5.709
  2. BARDI, M. - MANNUCCI, P., Comparison principles for equations of Monge-Ampére type associated to vector fields, to appear. Zbl1203.35081MR2605147
  3. BEATROUS, F. H. - BIESKE, T.J. - MANFREDI, J. J., The maximum principle for vector fields, Contemp. Math.370, Amer. Math. Soc., Providence, RI, 2005, 1-9. Zbl1084.49028MR2126697DOI10.1090/conm/370/06825
  4. A. BELLAICHE - J. J. RISLER eds, Sub-Riemannian geometry, Progress in Mathematics, 144, Birkhäuser Verlag, Basel, 1996. MR1421821DOI10.1007/978-3-0348-9210-0
  5. BIESKE, T., On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. Zbl1090.35063MR1900561DOI10.1081/PDE-120002872
  6. BIESKE, T., Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. Zbl1029.35079MR1951247
  7. BONFIGLIOLI, A. - LANCONELLI, E. - UGUZZONI, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin2007. Zbl1128.43001MR2363343
  8. CAFFARELLI, L. A., The Monge Ampere equation and Optimal Transportation, Contemp. Math., 353 (2004), Amer. Math. Soc., Providence, RI, 2004, 43-52. Zbl1149.35345MR2079068DOI10.1090/conm/353/06430
  9. CRANDALL, M. G. - ISHII, H. - LIONS, P. L., User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
  10. DANIELLI, D. - GAROFALO, N. - NHIEU, D. M., Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341. Zbl1077.22007MR2014879DOI10.4310/CAG.2003.v11.n2.a5
  11. GAROFALO, N. - TOURNIER, F., New properties of convex functions in the Heisenberg group, Trans. Amer. Math. Soc., 358 (2006), 2011-2055. Zbl1102.35033MR2197446DOI10.1090/S0002-9947-05-04016-X
  12. GUTIÉRREZ, C. E. - MONTANARI, A., Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. Zbl1056.35033MR2103838DOI10.1081/PDE-200037752
  13. ISHII, H. - LIONS, P. L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. Zbl0708.35031MR1031377DOI10.1016/0022-0396(90)90068-Z
  14. JUUTINEN, P. - LU, G. - MANFREDI, J. - STROFFOLINI, B., Convex functions in Carnot groups, Rev. Mat. Iberoamericana, 23 (2007), 191-200. Zbl1124.49024MR2351130DOI10.4171/RMI/490
  15. LU, G. - MANFREDI, J. - STROFFOLINI, B., Convex functions on the Heisenberg Group, Calc. Var. Partial Differential Equations, 19 (2004), 1-22. Zbl1072.49019MR2027845DOI10.1007/s00526-003-0190-4
  16. MAGNANI, V., Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, Math. Ann., 334 (2006), 199-233. Zbl1115.49004MR2208954DOI10.1007/s00208-005-0717-4
  17. MANFREDI, J. J., Nonlinear Subelliptic Equations on Carnot Groups, Third School on Analysis and Geometry in Metric Spaces, Trento, 2003, available at http://www.pitt.edu/ manfredi/ 
  18. RICKLY, M., First order regularity of convex functions on Carnot groups, J. Geom. Anal., 16 (2006), 679-702. Zbl1103.43005MR2271949DOI10.1007/BF02922136
  19. TRUDINGER, N. S., Recent developments in elliptic partial differential equations of Monge-Ampére type, International Congress of Mathematicians. Vol. III, 291-301, Eur. Math. Soc., Zurich, 2006. Zbl1130.35058MR2275682

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.