Comparison Principles for Subelliptic Equations of Monge-Ampère Type
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 2, page 489-495
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBardi, Martino, and Mannucci, Paola. "Comparison Principles for Subelliptic Equations of Monge-Ampère Type." Bollettino dell'Unione Matematica Italiana 1.2 (2008): 489-495. <http://eudml.org/doc/290456>.
@article{Bardi2008,
abstract = {We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.},
author = {Bardi, Martino, Mannucci, Paola},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {489-495},
publisher = {Unione Matematica Italiana},
title = {Comparison Principles for Subelliptic Equations of Monge-Ampère Type},
url = {http://eudml.org/doc/290456},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Bardi, Martino
AU - Mannucci, Paola
TI - Comparison Principles for Subelliptic Equations of Monge-Ampère Type
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/6//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 489
EP - 495
AB - We present two comparison principles for viscosity sub- and supersolutions of Monge-Ampére-type equations associated to a family of vector fields. In particular, we obtain the uniqueness of a viscosity solution to the Dirichlet problem for the equation of prescribed horizontal Gauss curvature in a Carnot group.
LA - eng
UR - http://eudml.org/doc/290456
ER -
References
top- BARDI, M. - MANNUCCI, P., On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations, Commun. Pure Applied Anal., 5 (2006), 709-731. Zbl1142.35041MR2246004DOI10.3934/cpaa.2006.5.709
- BARDI, M. - MANNUCCI, P., Comparison principles for equations of Monge-Ampére type associated to vector fields, to appear. Zbl1203.35081MR2605147
- BEATROUS, F. H. - BIESKE, T.J. - MANFREDI, J. J., The maximum principle for vector fields, Contemp. Math.370, Amer. Math. Soc., Providence, RI, 2005, 1-9. Zbl1084.49028MR2126697DOI10.1090/conm/370/06825
- A. BELLAICHE - J. J. RISLER eds, Sub-Riemannian geometry, Progress in Mathematics, 144, Birkhäuser Verlag, Basel, 1996. MR1421821DOI10.1007/978-3-0348-9210-0
- BIESKE, T., On infinite harmonic functions on the Heisenberg group, Comm. Partial Differential Equations, 27 (2002), 727-761. Zbl1090.35063MR1900561DOI10.1081/PDE-120002872
- BIESKE, T., Viscosity solutions on Grushin-type planes, Illinois J. Math., 46 (2002), 893-911. Zbl1029.35079MR1951247
- BONFIGLIOLI, A. - LANCONELLI, E. - UGUZZONI, F., Stratified Lie Groups and Potential Theory for Their Sub-Laplacians, Springer, Berlin2007. Zbl1128.43001MR2363343
- CAFFARELLI, L. A., The Monge Ampere equation and Optimal Transportation, Contemp. Math., 353 (2004), Amer. Math. Soc., Providence, RI, 2004, 43-52. Zbl1149.35345MR2079068DOI10.1090/conm/353/06430
- CRANDALL, M. G. - ISHII, H. - LIONS, P. L., User's guide to viscosity solutions of second-order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67. Zbl0755.35015MR1118699DOI10.1090/S0273-0979-1992-00266-5
- DANIELLI, D. - GAROFALO, N. - NHIEU, D. M., Notions of convexity in Carnot groups, Comm. Anal. Geom., 11 (2003), 263-341. Zbl1077.22007MR2014879DOI10.4310/CAG.2003.v11.n2.a5
- GAROFALO, N. - TOURNIER, F., New properties of convex functions in the Heisenberg group, Trans. Amer. Math. Soc., 358 (2006), 2011-2055. Zbl1102.35033MR2197446DOI10.1090/S0002-9947-05-04016-X
- GUTIÉRREZ, C. E. - MONTANARI, A., Maximum and comparison principles for convex functions on the Heisenberg group, Comm. Partial Differential Equations, 29 (2004), 1305-1334. Zbl1056.35033MR2103838DOI10.1081/PDE-200037752
- ISHII, H. - LIONS, P. L., Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Diff. Eq., 83 (1990), 26-78. Zbl0708.35031MR1031377DOI10.1016/0022-0396(90)90068-Z
- JUUTINEN, P. - LU, G. - MANFREDI, J. - STROFFOLINI, B., Convex functions in Carnot groups, Rev. Mat. Iberoamericana, 23 (2007), 191-200. Zbl1124.49024MR2351130DOI10.4171/RMI/490
- LU, G. - MANFREDI, J. - STROFFOLINI, B., Convex functions on the Heisenberg Group, Calc. Var. Partial Differential Equations, 19 (2004), 1-22. Zbl1072.49019MR2027845DOI10.1007/s00526-003-0190-4
- MAGNANI, V., Lipschitz continuity, Aleksandrov theorem and characterizations for H-convex functions, Math. Ann., 334 (2006), 199-233. Zbl1115.49004MR2208954DOI10.1007/s00208-005-0717-4
- MANFREDI, J. J., Nonlinear Subelliptic Equations on Carnot Groups, Third School on Analysis and Geometry in Metric Spaces, Trento, 2003, available at http://www.pitt.edu/ manfredi/
- RICKLY, M., First order regularity of convex functions on Carnot groups, J. Geom. Anal., 16 (2006), 679-702. Zbl1103.43005MR2271949DOI10.1007/BF02922136
- TRUDINGER, N. S., Recent developments in elliptic partial differential equations of Monge-Ampére type, International Congress of Mathematicians. Vol. III, 291-301, Eur. Math. Soc., Zurich, 2006. Zbl1130.35058MR2275682
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.