Singular Bundles with Bounded -Curvatures
Thiemo Kessel; Tristan Rivière
Bollettino dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 3, page 881-901
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topKessel, Thiemo, and Rivière, Tristan. "Singular Bundles with Bounded $L^2$-Curvatures." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 881-901. <http://eudml.org/doc/290478>.
@article{Kessel2008,
abstract = {We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.},
author = {Kessel, Thiemo, Rivière, Tristan},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {881-901},
publisher = {Unione Matematica Italiana},
title = {Singular Bundles with Bounded $L^2$-Curvatures},
url = {http://eudml.org/doc/290478},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Kessel, Thiemo
AU - Rivière, Tristan
TI - Singular Bundles with Bounded $L^2$-Curvatures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 881
EP - 901
AB - We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.
LA - eng
UR - http://eudml.org/doc/290478
ER -
References
top- BETHUEL, F., The approximation problem for Sobolev maps between two manifolds. Acta Math., 167, no. 3-4 (1991), 153-206. Zbl0756.46017MR1120602DOI10.1007/BF02392449
- BETHUEL, F., A characterization of maps in which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, no. 4 (1990), 269-286. Zbl0708.58004MR1067776DOI10.1016/S0294-1449(16)30292-X
- BETHUEL, F. - CORON, J. M. - DEMENGEL, F. - HÉLEIN, F., A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. Nematic (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, (1991), 15-23. Zbl0735.46017MR1178083
- BETHUEL, F. - BREZIS, H. - CORON, J.-M., Relaxed energies for harmonic maps. Variational methods (Paris, 1988), 37-52, Progr. Nonlinear Differential Equations Appl., 4, Birkauser Boston, Boston, MA, 1990. Zbl0793.58011MR1205144DOI10.1007/978-1-4757-1080-9_3
- BREZIS, H. - CORON, J.M. - LIEB, E., Harmonic maps with defects. Comm. Math. Phys., 107, no. 4 (1986), 649-705. Zbl0608.58016MR868739
- DONALDSON, S. K. - KRONHEIMER, P. B., `The geometry of four-manifolds'. Oxford, (1990). Zbl0820.57002MR1079726
- DONALDSON, S. K. - THOMAS, R. P., Gauge theory in higher dimensions. The geometric universe (Oxford, 1996), 31-47, Oxford Univ. Press, Oxford, 1998. Zbl0926.58003MR1634503
- DUBOIS-VIOLETTE, M., Équation de Yang et Mills, modèles à deux dimensions et généralisation. Progr. Math., 37, Birkhauser Boston, Boston, MA, 1983. Zbl0534.53056MR728413
- FREED, D. - UHLENBECK, K., Instantons and four-manifolds. MSRI Pub.1, Springer, (1991). MR1081321DOI10.1007/978-1-4613-9703-8
- GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Cartesian currents in the calculus of variations I and II. Springer-Verlag, Berlin, 1998. MR1645086DOI10.1007/978-3-662-06218-0
- HARDT, R. - LIN, F.H., A remark on mappings of Riemannian manifolds. Manuscripta Math., 56 (1986), 1-10. MR846982DOI10.1007/BF01171029
- HÉLEIN, F., Harmonic maps, conservation laws and moving frames. Diderot, (1996). MR1913803DOI10.1017/CBO9780511543036
- ISOBE, T., Energy estimate, energy gap phenomenon and relaxed energy for Yang-Mills functional. J. Geom. Anal., 8 (1998), 43-64. Zbl0933.58013MR1704568DOI10.1007/BF02922108
- ISOBE, T., Relaxed Yang-Mills functional over 4 manifolds. Topological Methods in Non Linear Analysis, 6 (1995), 235-253. Zbl0874.58008MR1399538DOI10.12775/TMNA.1995.043
- KESSEL, T. - RIVIEÁRE, T., Approximation results for singular bundles with bounded -curvatures. in preparation (2008).
- MEYER, Y. - RIVIEÁRE, T., A partial regularity result for a class of stationary Yang-Mills fields in higher dimensions. Rev. Mat. Iberoamericana, 19, no. 1 (2003), 195-219. MR1993420DOI10.4171/RMI/343
- NARASIMHAN, M. S. - RAMANAN, S., Existence of universal connections. Amer. J. Math., 83 (1961), 563-572. Zbl0114.38203MR133772DOI10.2307/2372896
- NARASIMHAN, M. S. - RAMANAN, S., Existence of universal connections II. Amer. J. Math., 85 (1963), 223-231. Zbl0117.39002MR151923DOI10.2307/2373211
- RIVIEÁRE, T., Everywhere discontinuous harmonic maps into spheres. Acta Math., 175, no. 2 (1995), 197-226. MR1368247DOI10.1007/BF02393305
- SACKS, J. - UHLENBECK, K., The existence of minimal immersions of 2-spheres. Ann. of Math., 113 (1981), 1-24. Zbl0462.58014MR604040DOI10.2307/1971131
- SCHOEN, R. - UHLENBECK, K., A regularity theory for harmonic maps. J. Diff. Geom., 17 (1982), 307-335. Zbl0521.58021MR664498
- SCHOEN, R. - UHLENBECK, K., Approximation theorems for Sobolev mappings preprint (1984).
- SEDLACEK, S., A Direct Method for Minimizing the Yang-Mills Functional over 4-Manifolds, Commun. Math. Phys., 86 (1982), 515-527. Zbl0506.53016MR679200
- TIAN, G., Gauge theory and calibrated geometry I. Ann. of Math. (2) 151, no. 1 (2000), 193-268. Zbl0957.58013MR1745014DOI10.2307/121116
- TAO, T. - TIAN, G., A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc., 17, no. 3 (2004), 557-593 Zbl1086.53043MR2053951DOI10.1090/S0894-0347-04-00457-6
- UHLENBECK, K., Connections with bounds on curvature. Comm. Math. Phys., 83, (1982), 31-42. Zbl0499.58019MR648356
- UHLENBECK, K., Removable singularities in Yang-Mills fields. Comm. Math. Phys., 83, (1982), 11-29. Zbl0491.58032MR648355
- UHLENBECK, K., Variational problems for gauge fields. Seminar on Differential Geometry, Princeton University Press, 1982. Zbl0481.58016MR645753
- WHITE, B., Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta. Math., 160 (1988), 1-17. Zbl0647.58016MR926523DOI10.1007/BF02392271
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.