Singular Bundles with Bounded L 2 -Curvatures

Thiemo Kessel; Tristan Rivière

Bollettino dell'Unione Matematica Italiana (2008)

  • Volume: 1, Issue: 3, page 881-901
  • ISSN: 0392-4041

Abstract

top
We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded L 2 -curvatures.

How to cite

top

Kessel, Thiemo, and Rivière, Tristan. "Singular Bundles with Bounded $L^2$-Curvatures." Bollettino dell'Unione Matematica Italiana 1.3 (2008): 881-901. <http://eudml.org/doc/290478>.

@article{Kessel2008,
abstract = {We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.},
author = {Kessel, Thiemo, Rivière, Tristan},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {881-901},
publisher = {Unione Matematica Italiana},
title = {Singular Bundles with Bounded $L^2$-Curvatures},
url = {http://eudml.org/doc/290478},
volume = {1},
year = {2008},
}

TY - JOUR
AU - Kessel, Thiemo
AU - Rivière, Tristan
TI - Singular Bundles with Bounded $L^2$-Curvatures
JO - Bollettino dell'Unione Matematica Italiana
DA - 2008/10//
PB - Unione Matematica Italiana
VL - 1
IS - 3
SP - 881
EP - 901
AB - We consider calculus of variations of the Yang-Mills functional in dimensions larger than the critical dimension 4. We explain how this naturally leads to a class of - a priori not well-defined - singular bundles including possibly "almost everywhere singular bundles". In order to overcome this difficulty, we suggest a suitable new framework, namely the notion of singular bundles with bounded $L^2$-curvatures.
LA - eng
UR - http://eudml.org/doc/290478
ER -

References

top
  1. BETHUEL, F., The approximation problem for Sobolev maps between two manifolds. Acta Math., 167, no. 3-4 (1991), 153-206. Zbl0756.46017MR1120602DOI10.1007/BF02392449
  2. BETHUEL, F., A characterization of maps in H 1 ( B 3 , S 2 ) which can be approximated by smooth maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7, no. 4 (1990), 269-286. Zbl0708.58004MR1067776DOI10.1016/S0294-1449(16)30292-X
  3. BETHUEL, F. - CORON, J. M. - DEMENGEL, F. - HÉLEIN, F., A cohomological criterion for density of smooth maps in Sobolev spaces between two manifolds. Nematic (Orsay, 1990), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 332, Kluwer Acad. Publ., Dordrecht, (1991), 15-23. Zbl0735.46017MR1178083
  4. BETHUEL, F. - BREZIS, H. - CORON, J.-M., Relaxed energies for harmonic maps. Variational methods (Paris, 1988), 37-52, Progr. Nonlinear Differential Equations Appl., 4, Birkauser Boston, Boston, MA, 1990. Zbl0793.58011MR1205144DOI10.1007/978-1-4757-1080-9_3
  5. BREZIS, H. - CORON, J.M. - LIEB, E., Harmonic maps with defects. Comm. Math. Phys., 107, no. 4 (1986), 649-705. Zbl0608.58016MR868739
  6. DONALDSON, S. K. - KRONHEIMER, P. B., `The geometry of four-manifolds'. Oxford, (1990). Zbl0820.57002MR1079726
  7. DONALDSON, S. K. - THOMAS, R. P., Gauge theory in higher dimensions. The geometric universe (Oxford, 1996), 31-47, Oxford Univ. Press, Oxford, 1998. Zbl0926.58003MR1634503
  8. DUBOIS-VIOLETTE, M., Équation de Yang et Mills, modèles σ à deux dimensions et généralisation. Progr. Math., 37, Birkhauser Boston, Boston, MA, 1983. Zbl0534.53056MR728413
  9. FREED, D. - UHLENBECK, K., Instantons and four-manifolds. MSRI Pub.1, Springer, (1991). MR1081321DOI10.1007/978-1-4613-9703-8
  10. GIAQUINTA, M. - MODICA, G. - SOUČEK, J., Cartesian currents in the calculus of variations I and II. Springer-Verlag, Berlin, 1998. MR1645086DOI10.1007/978-3-662-06218-0
  11. HARDT, R. - LIN, F.H., A remark on H 1 mappings of Riemannian manifolds. Manuscripta Math., 56 (1986), 1-10. MR846982DOI10.1007/BF01171029
  12. HÉLEIN, F., Harmonic maps, conservation laws and moving frames. Diderot, (1996). MR1913803DOI10.1017/CBO9780511543036
  13. ISOBE, T., Energy estimate, energy gap phenomenon and relaxed energy for Yang-Mills functional. J. Geom. Anal., 8 (1998), 43-64. Zbl0933.58013MR1704568DOI10.1007/BF02922108
  14. ISOBE, T., Relaxed Yang-Mills functional over 4 manifolds. Topological Methods in Non Linear Analysis, 6 (1995), 235-253. Zbl0874.58008MR1399538DOI10.12775/TMNA.1995.043
  15. KESSEL, T. - RIVIEÁRE, T., Approximation results for singular bundles with bounded L p -curvatures. in preparation (2008). 
  16. MEYER, Y. - RIVIEÁRE, T., A partial regularity result for a class of stationary Yang-Mills fields in higher dimensions. Rev. Mat. Iberoamericana, 19, no. 1 (2003), 195-219. MR1993420DOI10.4171/RMI/343
  17. NARASIMHAN, M. S. - RAMANAN, S., Existence of universal connections. Amer. J. Math., 83 (1961), 563-572. Zbl0114.38203MR133772DOI10.2307/2372896
  18. NARASIMHAN, M. S. - RAMANAN, S., Existence of universal connections II. Amer. J. Math., 85 (1963), 223-231. Zbl0117.39002MR151923DOI10.2307/2373211
  19. RIVIEÁRE, T., Everywhere discontinuous harmonic maps into spheres. Acta Math., 175, no. 2 (1995), 197-226. MR1368247DOI10.1007/BF02393305
  20. SACKS, J. - UHLENBECK, K., The existence of minimal immersions of 2-spheres. Ann. of Math., 113 (1981), 1-24. Zbl0462.58014MR604040DOI10.2307/1971131
  21. SCHOEN, R. - UHLENBECK, K., A regularity theory for harmonic maps. J. Diff. Geom., 17 (1982), 307-335. Zbl0521.58021MR664498
  22. SCHOEN, R. - UHLENBECK, K., Approximation theorems for Sobolev mappings preprint (1984). 
  23. SEDLACEK, S., A Direct Method for Minimizing the Yang-Mills Functional over 4-Manifolds, Commun. Math. Phys., 86 (1982), 515-527. Zbl0506.53016MR679200
  24. TIAN, G., Gauge theory and calibrated geometry I. Ann. of Math. (2) 151, no. 1 (2000), 193-268. Zbl0957.58013MR1745014DOI10.2307/121116
  25. TAO, T. - TIAN, G., A singularity removal theorem for Yang-Mills fields in higher dimensions. J. Amer. Math. Soc., 17, no. 3 (2004), 557-593 Zbl1086.53043MR2053951DOI10.1090/S0894-0347-04-00457-6
  26. UHLENBECK, K., Connections with L p bounds on curvature. Comm. Math. Phys., 83, (1982), 31-42. Zbl0499.58019MR648356
  27. UHLENBECK, K., Removable singularities in Yang-Mills fields. Comm. Math. Phys., 83, (1982), 11-29. Zbl0491.58032MR648355
  28. UHLENBECK, K., Variational problems for gauge fields. Seminar on Differential Geometry, Princeton University Press, 1982. Zbl0481.58016MR645753
  29. WHITE, B., Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta. Math., 160 (1988), 1-17. Zbl0647.58016MR926523DOI10.1007/BF02392271

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.