Teorema del centro di Lyapunov equivariante per PDE
La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana (2008)
- Volume: 1, Issue: 2, page 227-230
- ISSN: 1972-7356
Access Full Article
topHow to cite
topBardelle, Cristina. "Teorema del centro di Lyapunov equivariante per PDE." La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana 1.2 (2008): 227-230. <http://eudml.org/doc/290531>.
@article{Bardelle2008,
author = {Bardelle, Cristina},
journal = {La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana},
language = {ita},
month = {8},
number = {2},
pages = {227-230},
publisher = {Unione Matematica Italiana},
title = {Teorema del centro di Lyapunov equivariante per PDE},
url = {http://eudml.org/doc/290531},
volume = {1},
year = {2008},
}
TY - JOUR
AU - Bardelle, Cristina
TI - Teorema del centro di Lyapunov equivariante per PDE
JO - La Matematica nella Società e nella Cultura. Rivista dell'Unione Matematica Italiana
DA - 2008/8//
PB - Unione Matematica Italiana
VL - 1
IS - 2
SP - 227
EP - 230
LA - ita
UR - http://eudml.org/doc/290531
ER -
References
top- BAMBUSI, D., Lyapunov center theorem for some nonlinear PDE's: a simple proof, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 823-837. Zbl1008.35003MR1822409
- BOURGAIN, J., Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices (1994), 475ff., approx. 21 pp. (electronic). Zbl0817.35102MR1316975DOI10.1155/S1073792894000516
- CRAIG, W. and WAYNE, C. E., Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498. Zbl0794.35104MR1239318DOI10.1002/cpa.3160461102
- KUKSIN, S. B., Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1556 (1993), xxviii+101. Zbl0784.58028MR1290785DOI10.1007/BFb0092243
- NEKHOROSHEV, N. N., The Poincaré-Lyapunov-Liouville-Arnold's theorem, Funktsional. Anal. i Prilozhen., 28 (1994), 67-69. MR1283258DOI10.1007/BF01076504
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.