Lyapunov center theorem for some nonlinear PDE's : a simple proof

Dario Bambusi

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2000)

  • Volume: 29, Issue: 4, page 823-837
  • ISSN: 0391-173X

How to cite

top

Bambusi, Dario. "Lyapunov center theorem for some nonlinear PDE's : a simple proof." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 29.4 (2000): 823-837. <http://eudml.org/doc/84429>.

@article{Bambusi2000,
author = {Bambusi, Dario},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {small oscillations; nonresonance; nonlinear partial differential equation},
language = {eng},
number = {4},
pages = {823-837},
publisher = {Scuola normale superiore},
title = {Lyapunov center theorem for some nonlinear PDE's : a simple proof},
url = {http://eudml.org/doc/84429},
volume = {29},
year = {2000},
}

TY - JOUR
AU - Bambusi, Dario
TI - Lyapunov center theorem for some nonlinear PDE's : a simple proof
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2000
PB - Scuola normale superiore
VL - 29
IS - 4
SP - 823
EP - 837
LA - eng
KW - small oscillations; nonresonance; nonlinear partial differential equation
UR - http://eudml.org/doc/84429
ER -

References

top
  1. [1] S.B. Kuksin, Hamiltonian Perturbations of Infinite-dimensional LinearSystems with Imaginary Spectrum, Funktsional. Anal. i Prilozhen.21 (3) (1987), 22-37, Translated in Funct. Anal. Appl.21 (1987). Zbl0716.34083MR911772
  2. [2] S.B. Kuksin, "Nearly Integrable Infinite-Dimensional Hamiltonian Systems", Lect. Notes Math.1556, Springer, 1994. Zbl0784.58028MR1290785
  3. [3] J. Pöschel, A KAM-Theorem for some Partial Differential Equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 23 (1996), 119-148. Zbl0870.34060MR1401420
  4. [4] W. Craig — C.E. Wayne, Newton's Method and Periodic Solutions of Nonlinear Wave Equations, Comm. Pure Appl. Math.46 (1993), 1409-1501. Zbl0794.35104MR1239318
  5. [5] J. Bourgain, Construction of periodic solutions of nonlinear wave equations in higher dimension, Geom. Funct. Anal.5 (1995), 629-639. Zbl0834.35083MR1345016
  6. [6] J. Bourgain, Nonlinear Schrödinger equations, In "Hyperbolic equations and frequency interactions" ; L. Caffarelli, E. Weinan editors. IAS/Park City mathematics series 5. American Mathematical Society (Providence, Rhode Island1999). Zbl0952.35127MR1662834
  7. [7] A. Ambrosetti — G. Prodi, "A primer of Nonlinear Analysis", Cambridge University Press, Cambridge, 1993. Zbl0781.47046MR1225101
  8. [8] R. De La Llave, Variational methods for quasi-periodic solutions of partial differential equations, preprint 1999 available in mparc (http://www.ma.utexas.edu/mp_arc/), n°00-56. 
  9. [9] J. Mujica, "Complex Analysis in Banach Spaces.", North Holland Mathematical Studies120, Amsterdam, 1986. Zbl0586.46040MR842435
  10. [10] A. Pazy, "Semigroups of Linear Operators and Applications to Partial Differential Equations", Springer Verlag, New York, 1983. Zbl0516.47023MR710486
  11. [11] W.M. Schmidt, "Diophantine Approximation", Lect. Notes Math.785, Springer, Verlag, 1980. Zbl0421.10019MR568710
  12. [12] J. Pöschel — E. Trubowitz, "Inversal Spectral Theory", Academic Press, Boston, 1987. Zbl0623.34001MR894477

NotesEmbed ?

top

You must be logged in to post comments.