Three Dimensional Vortices in the Nonlinear Wave Equation
Marino Badiale; Vieri Benci; Sergio Rolando
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 1, page 105-134
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topBadiale, Marino, Benci, Vieri, and Rolando, Sergio. "Three Dimensional Vortices in the Nonlinear Wave Equation." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 105-134. <http://eudml.org/doc/290553>.
@article{Badiale2009,
abstract = {We prove the existence of rotating solitary waves (vortices) for the nonlinear Klein-Gordon equation with nonnegative potential, by finding nonnegative cylindrical solutions to the standing equation \begin\{equation\} \tag\{\dag\} -\Delta u + \frac\{\mu\}\{|y|^\{2\}\} u + \lambda u = g(u), \quad u \in H^\{1\}(\mathbb\{R\}^\{N\}), \quad \int\_\{\mathbb\{R\}^\{N\}\} \frac\{u^\{2\}\}\{|y|^\{2\}\} \, dx < \infty,\end\{equation\} where $x=(y,z) \in \mathbb\{R\}^\{k\} \times \mathbb\{R\}^\{N-k\}$, $N > k \ge 2$, $\mu > 0$ and $\lambda \ge 0$. The nonnegativity of the potential makes the equation suitable for physical models and guarantees the wellposedness of the corresponding Cauchy problem, but it prevents the use of standard arguments in providing the functional associated to $(\dag)$ with bounded Palais-Smale sequences.},
author = {Badiale, Marino, Benci, Vieri, Rolando, Sergio},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {105-134},
publisher = {Unione Matematica Italiana},
title = {Three Dimensional Vortices in the Nonlinear Wave Equation},
url = {http://eudml.org/doc/290553},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Badiale, Marino
AU - Benci, Vieri
AU - Rolando, Sergio
TI - Three Dimensional Vortices in the Nonlinear Wave Equation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 105
EP - 134
AB - We prove the existence of rotating solitary waves (vortices) for the nonlinear Klein-Gordon equation with nonnegative potential, by finding nonnegative cylindrical solutions to the standing equation \begin{equation} \tag{\dag} -\Delta u + \frac{\mu}{|y|^{2}} u + \lambda u = g(u), \quad u \in H^{1}(\mathbb{R}^{N}), \quad \int_{\mathbb{R}^{N}} \frac{u^{2}}{|y|^{2}} \, dx < \infty,\end{equation} where $x=(y,z) \in \mathbb{R}^{k} \times \mathbb{R}^{N-k}$, $N > k \ge 2$, $\mu > 0$ and $\lambda \ge 0$. The nonnegativity of the potential makes the equation suitable for physical models and guarantees the wellposedness of the corresponding Cauchy problem, but it prevents the use of standard arguments in providing the functional associated to $(\dag)$ with bounded Palais-Smale sequences.
LA - eng
UR - http://eudml.org/doc/290553
ER -
References
top- AMBROSETTI, A. - RABINOWITZ, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381. Zbl0273.49063MR370183
- AMBROSETTI, A. - STRUWE, M., Existence of steady vortex rings in an ideal fluid, Arch. Rational Mech. Anal., 108 (1989), 97-109. Zbl0694.76012MR1011553DOI10.1007/BF01053458
- BADIALE, M. - BENCI, V. - ROLANDO, S., Solitary waves: physical aspects and mathematical results, Rend. Sem. Math. Univ. Pol. Torino, 62 (2004), 107-154. Zbl1120.37045MR2131956
- BADIALE, M. - BENCI, V. - ROLANDO, S., A nonlinear elliptic equation with singular potential and applications to nonlinear field equations, J. Eur. Math. Soc., 9 (2007), 355-381. Zbl1149.35033MR2314102DOI10.4171/JEMS/83
- BADIALE, M. - ROLANDO, S., Vortices with prescribed norm in the nonlinear wave equation, preprint 2008. Zbl1172.35064MR2454877DOI10.1515/ans-2008-0410
- BADIALE, M. - TARANTELLO, G., A Sobolev-Hardy inequality with applications to a nonlinear elliptic equation arising in astrophysics, Arch. Rational Mech. Anal., 163 (2002), 259-293. Zbl1010.35041MR1918928DOI10.1007/s002050200201
- BENCI, V. - D'APRILE, T., The semiclassical limit of the nonlinear Schrödinger equation in a radial potential, J. Differential Equations, 184 (2002), 109-138. MR1929149DOI10.1006/jdeq.2001.4138
- BENCI, V. - FORTUNATO, D., Existence of 3D-vortices in abelian gauge theories, Mediterr. J. Math., 3 (2006), 409-418. Zbl1167.35351MR2274734DOI10.1007/s00009-006-0087-5
- BENCI, V. - FORTUNATO, D., Solitary waves in the nonlinear wave equation and in gauge theories, J. Fixed Point Theory Appl., 1 (2007), 61-86. Zbl1122.35121MR2282344DOI10.1007/s11784-006-0008-z
- BENCI, V. - FORTUNATO, D., Vortices in abelian gauge theories, work in progress. Zbl1173.81013
- BENCI, V. - VISCIGLIA, N., Solitary waves with non vanishing angular momentum, Adv. Nonlinear Stud., 3 (2003), 151-160. Zbl1030.35051MR1955598DOI10.1515/ans-2003-0104
- BERESTYCKI, H. - LIONS, P. L., Nonlinear scalar field equations, I - Existence of a ground state, Arch. Rational Mech. Anal., 82 (1983), 313-345. Zbl0533.35029MR695535DOI10.1007/BF00250555
- BERGER, M. S., On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Funct. Analysis, 9 (1972), 249-261. Zbl0224.35061MR299966
- BRIHAYE, Y. - HARTMANN, B. - ZAKRZEWSKI, W. J., Spinning solitons of a modified non-linear Schroedinger equation, Phys. Rev. D, 69, 087701. MR2094947DOI10.1103/PhysRevD.69.087701
- COLEMAN, S. - GLASER, V. - MARTIN, A., Action minima among solutions to a class of euclidean scalar field equation, Comm. Math. Phys, 58 (1978), 211-221. MR468913
- COLEMAN, S., Q-Balls, Nucl. Phys. B, 262 (1985), 263-283. MR819656DOI10.1016/0550-3213(85)90286-X
- CRASOVAN, L. C. - MALOMED, B. A. - MIHALACHE, D., Spinning solitons in cubic-quintic nonlinear media, Pramana, 57 (2001), 1041- 1059.
- D'APRILE, T., On a class of solutions with non-vanishing angular momentum for nonlinear Schrödinger equations, Diff. Integral Eq., 16 (2003), 349-384. MR1947957
- DERRICK, G. H., Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys., 5 (1964), 1252-1254. MR174304DOI10.1063/1.1704233
- GIAQUINTA, M., Introduction to regularity theory for nonlinear elliptic systems, Birkhäuser Verlag, 1993. Zbl0786.35001MR1239172
- KIM, C. - KIM, S. - KIM, Y., Global nontopological vortices, Phys. Rev. D, 47 (1985), 5434-5443.
- KUSENKO, A. - SHAPOSHNIKOV, M., Supersymmetric Q-balls as dark matter, Phys. Lett. B, 418 (1998), 46-54.
- KUZIN, I. - POHOŽAEV, S., Entire solutions of semilinear elliptic equations, PNLDE, vol. 33, Birkhäuser, 1997.
- LIONS, P. L., Solutions complexes d'équations elliptiques semilinéaires dans , C. R. Acad. Sci. Paris, série I, 302 (1986), 673-676. Zbl0606.35027MR847751
- PALAIS, R. S., The principle of symmetric criticality, Commun. Math. Phys., 69 (1979), 19-30. Zbl0417.58007MR547524
- RAJARAMAN, R., Solitons and instantons, North-Holland Physics Publishing, 1987. MR719693
- ROSEN, G., Particlelike solutions to nonlinear complex scalar field theories with positive-definite energy densities, J. Math. Phys., 9 (1968), 996-998.
- SOLIMINI, S., A note on compactness-type properties with respect to Lorentz norms of bounded subsets of a Sobolev space, Ann. Inst. Henry Poincaré - Analyse non linéaire, 12 (1995), 319-337. Zbl0837.46025MR1340267DOI10.1016/S0294-1449(16)30159-7
- SHATAH, J., Stable standing waves of nonlinear Klein-Gordon equations, Comm. Math. Phys., 91 (1983), 313-327. Zbl0539.35067MR723756
- SHATAH, J., Unstable ground state of nonlinear Klein-Gordon equations, Trans. Amer. Math. Soc., 290 (1985), 701-710. Zbl0617.35072MR792821DOI10.2307/2000308
- STRAUSS, W. A., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55 (1977), 149-172. Zbl0356.35028MR454365
- STRAUSS, W. A., Nonlinear invariant wave equations, Lecture Notes in Phisics, vol. 23, Springer, 1978. MR498955
- VOLKOV, M. S., Existence of spinning solitons in field theory, eprint arXiv:hep-th/ 0401030 (2004).
- VOLKOV, M. S. - WÖHNERT, E., Spinning Q-balls, Phys. Rev. D, 66 (2002) 085003.
- WILLEM, M., Minimax theorems, PNLDE, vol. 24, Birkhäuser, 1996. MR1400007DOI10.1007/978-1-4612-4146-1
- WITHAM, G. B., Linear and nonlinear waves, John Wiley & Sons, 1974. MR483954
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.