A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions

Gianni Dal Maso; Alessandro Giacomini; Marcello Ponsiglione

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 2, page 371-390
  • ISSN: 0392-4041

Abstract

top
We present the main existence result for quasistatic crack growth in the model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative properties of the solutions.

How to cite

top

Dal Maso, Gianni, Giacomini, Alessandro, and Ponsiglione, Marcello. "A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 371-390. <http://eudml.org/doc/290560>.

@article{DalMaso2009,
abstract = {We present the main existence result for quasistatic crack growth in the model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative properties of the solutions.},
author = {Dal Maso, Gianni, Giacomini, Alessandro, Ponsiglione, Marcello},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {371-390},
publisher = {Unione Matematica Italiana},
title = {A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions},
url = {http://eudml.org/doc/290560},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Dal Maso, Gianni
AU - Giacomini, Alessandro
AU - Ponsiglione, Marcello
TI - A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 371
EP - 390
AB - We present the main existence result for quasistatic crack growth in the model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative properties of the solutions.
LA - eng
UR - http://eudml.org/doc/290560
ER -

References

top
  1. AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of bounded variations and free discontinuity problems. Clarendon Press, Oxford, 2000. Zbl0957.49001MR1857292
  2. BREZIS, H., Convergence in 𝒟 and in L 1 under strict convexity. Boundary value problems for partial differential equations and applications, 43-52, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993. Zbl0813.49016MR1260437
  3. CASTAING, C. - VALADIER, M., Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. Zbl0346.46038MR467310
  4. CHAMBOLLE, A., A density result in two-dimensional linearized elasticity and applications.Arch. Ration. Mech. Anal., 167 (2003), 211-233. Zbl1030.74007MR1978582DOI10.1007/s00205-002-0240-7
  5. CHAMBOLLE, A. - GIACOMINI, A. - PONSIGLIONE, M., Crack initiation in brittle materials. Arch. Ration. Mech. Anal., 188 (2008), 309-349. Zbl1138.74042MR2385744DOI10.1007/s00205-007-0080-6
  6. DACOROGNA, B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890DOI10.1007/978-3-642-51440-1
  7. DAL MASO, G. - FRANCFORT, G. A. - TOADER, R., Quasi-static crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal., 176 (2005), 165-225. Zbl1064.74150MR2186036DOI10.1007/s00205-004-0351-4
  8. DAL MASO, G. - TOADER, R., A model for the quasistatic growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal., 162 (2002), 101-135. Zbl1042.74002MR1897378DOI10.1007/s002050100187
  9. DE GIORGI, E. - AMBROSIO, L., Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. MR1152641
  10. FRANCFORT, G. A. - LARSEN, C. J., Existence and convergence for quasistatic evolution in brittle fracture. Comm. Pure Appl. Math., 56 (2003), 1465-1500. Zbl1068.74056MR1988896DOI10.1002/cpa.3039
  11. FRANCFORT, G. A. - MARIGO, J.-J., Revisiting brittle fractures as an energy minimization problem. J. Mech. Phys. Solids, 46 (1998), 1319-1342. Zbl0966.74060MR1633984DOI10.1016/S0022-5096(98)00034-9
  12. GRIFFITH, A., The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163-198. 
  13. MAINIK, A., Existence results for rate-independent phase transformations in shape-memory alloys. Arch. Ration. Mech. Anal., to appear. 
  14. MIELKE, A., Evolution of rate-independent systems. In: Evolutionary equations. Vol. II. Edited by C.M. Dafermos and E. Feireisl, 461-559, Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, 2005. Zbl1120.47062MR2182832
  15. ROCKAFELLAR, R. T., Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J.1970. MR274683
  16. YOSIDA, K., Functional analysis. Springer, 1965. MR180824

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.