A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions
Gianni Dal Maso; Alessandro Giacomini; Marcello Ponsiglione
Bollettino dell'Unione Matematica Italiana (2009)
- Volume: 2, Issue: 2, page 371-390
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topDal Maso, Gianni, Giacomini, Alessandro, and Ponsiglione, Marcello. "A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions." Bollettino dell'Unione Matematica Italiana 2.2 (2009): 371-390. <http://eudml.org/doc/290560>.
@article{DalMaso2009,
abstract = {We present the main existence result for quasistatic crack growth in the model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative properties of the solutions.},
author = {Dal Maso, Gianni, Giacomini, Alessandro, Ponsiglione, Marcello},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {6},
number = {2},
pages = {371-390},
publisher = {Unione Matematica Italiana},
title = {A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions},
url = {http://eudml.org/doc/290560},
volume = {2},
year = {2009},
}
TY - JOUR
AU - Dal Maso, Gianni
AU - Giacomini, Alessandro
AU - Ponsiglione, Marcello
TI - A Variational Model for Quasistatic Crack Growth in Nonlinear Elasticity: Some Qualitative Properties of the Solutions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/6//
PB - Unione Matematica Italiana
VL - 2
IS - 2
SP - 371
EP - 390
AB - We present the main existence result for quasistatic crack growth in the model proposed by Dal Maso, Francfort, and Toader, and prove some qualitative properties of the solutions.
LA - eng
UR - http://eudml.org/doc/290560
ER -
References
top- AMBROSIO, L. - FUSCO, N. - PALLARA, D., Functions of bounded variations and free discontinuity problems. Clarendon Press, Oxford, 2000. Zbl0957.49001MR1857292
- BREZIS, H., Convergence in and in under strict convexity. Boundary value problems for partial differential equations and applications, 43-52, RMA Res. Notes Appl. Math., 29, Masson, Paris, 1993. Zbl0813.49016MR1260437
- CASTAING, C. - VALADIER, M., Convex analysis and measurable multifunctions. Lecture Notes in Mathematics, Vol. 580, Springer-Verlag, Berlin-New York, 1977. Zbl0346.46038MR467310
- CHAMBOLLE, A., A density result in two-dimensional linearized elasticity and applications.Arch. Ration. Mech. Anal., 167 (2003), 211-233. Zbl1030.74007MR1978582DOI10.1007/s00205-002-0240-7
- CHAMBOLLE, A. - GIACOMINI, A. - PONSIGLIONE, M., Crack initiation in brittle materials. Arch. Ration. Mech. Anal., 188 (2008), 309-349. Zbl1138.74042MR2385744DOI10.1007/s00205-007-0080-6
- DACOROGNA, B., Direct methods in the calculus of variations, Springer-Verlag, Berlin, 1989. Zbl0703.49001MR990890DOI10.1007/978-3-642-51440-1
- DAL MASO, G. - FRANCFORT, G. A. - TOADER, R., Quasi-static crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal., 176 (2005), 165-225. Zbl1064.74150MR2186036DOI10.1007/s00205-004-0351-4
- DAL MASO, G. - TOADER, R., A model for the quasistatic growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal., 162 (2002), 101-135. Zbl1042.74002MR1897378DOI10.1007/s002050100187
- DE GIORGI, E. - AMBROSIO, L., Un nuovo tipo di funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 82 (1988), 199-210. MR1152641
- FRANCFORT, G. A. - LARSEN, C. J., Existence and convergence for quasistatic evolution in brittle fracture. Comm. Pure Appl. Math., 56 (2003), 1465-1500. Zbl1068.74056MR1988896DOI10.1002/cpa.3039
- FRANCFORT, G. A. - MARIGO, J.-J., Revisiting brittle fractures as an energy minimization problem. J. Mech. Phys. Solids, 46 (1998), 1319-1342. Zbl0966.74060MR1633984DOI10.1016/S0022-5096(98)00034-9
- GRIFFITH, A., The phenomena of rupture and flow in solids. Philos. Trans. Roy. Soc. London Ser. A, 221 (1920), 163-198.
- MAINIK, A., Existence results for rate-independent phase transformations in shape-memory alloys. Arch. Ration. Mech. Anal., to appear.
- MIELKE, A., Evolution of rate-independent systems. In: Evolutionary equations. Vol. II. Edited by C.M. Dafermos and E. Feireisl, 461-559, Handbook of Differential Equations. Elsevier/North-Holland, Amsterdam, 2005. Zbl1120.47062MR2182832
- ROCKAFELLAR, R. T., Convex analysis. Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J.1970. MR274683
- YOSIDA, K., Functional analysis. Springer, 1965. MR180824
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.