# Consistent models for electrical networks with distributed parameters

Corneliu A. Marinov; Gheorghe Moroşanu

Mathematica Bohemica (1992)

- Volume: 117, Issue: 2, page 113-122
- ISSN: 0862-7959

## Access Full Article

top## Abstract

top## How to cite

topMarinov, Corneliu A., and Moroşanu, Gheorghe. "Consistent models for electrical networks with distributed parameters." Mathematica Bohemica 117.2 (1992): 113-122. <http://eudml.org/doc/29058>.

@article{Marinov1992,

abstract = {A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form $L^2(0,T;H^1)$, one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.},

author = {Marinov, Corneliu A., Moroşanu, Gheorghe},

journal = {Mathematica Bohemica},

keywords = {weak solution; system of one-dimensional linear parabolic equations; additional state variables; lumped capacitors; resistive multiport; existence and uniqueness of variational solution; initial-boundary value problem; monotone operators; parabolic equations; variational solution; weak solution; system of one-dimensional linear parabolic equations; additional state variables; lumped capacitors; resistive multiport; existence and uniqueness of variational solution; initial-boundary value problem; monotone operators},

language = {eng},

number = {2},

pages = {113-122},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Consistent models for electrical networks with distributed parameters},

url = {http://eudml.org/doc/29058},

volume = {117},

year = {1992},

}

TY - JOUR

AU - Marinov, Corneliu A.

AU - Moroşanu, Gheorghe

TI - Consistent models for electrical networks with distributed parameters

JO - Mathematica Bohemica

PY - 1992

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 117

IS - 2

SP - 113

EP - 122

AB - A system of one-dimensional linear parabolic equations coupled by boundary conditions which include additional state variables, is considered. This system describes an electric circuit with distributed parameter lines and lumped capacitors all connected through a resistive multiport. By using the monotony in a space of the form $L^2(0,T;H^1)$, one proves the existence and uniqueness of a variational solution, if reasonable engineering hypotheses are fulfilled.

LA - eng

KW - weak solution; system of one-dimensional linear parabolic equations; additional state variables; lumped capacitors; resistive multiport; existence and uniqueness of variational solution; initial-boundary value problem; monotone operators; parabolic equations; variational solution; weak solution; system of one-dimensional linear parabolic equations; additional state variables; lumped capacitors; resistive multiport; existence and uniqueness of variational solution; initial-boundary value problem; monotone operators

UR - http://eudml.org/doc/29058

ER -

## References

top- V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff, Leyden, 1976. (1976) Zbl0328.47035MR0390843
- V. Barbu. T. Precupanu, Convexity and Optimization in Banach Spaces, D. Reidel Publ. Co., Dordrecht, Boston, Lancaster, 1987. (1987) MR0860772
- K. L. Cookej D. W. Krumme, 10.1016/0022-247X(68)90038-3, J. Math. Anal. Appl. 24 (1968), 372-387. (1968) MR0232089DOI10.1016/0022-247X(68)90038-3
- M. S. Ghausi J. J. Kelly, Introduction to Distributed Parameter Networks with Applications to Integrated Circuits, Holt, Rinehart Winston, New-York, 1968. (1968)
- C. A. Marinov, Qualitative properties of ${l}^{p}$ solutions of infinite differential systems via dissipativity, Nonlinear Analysis T.M.A. 8 (1984), 441-456. (1984) MR0741600
- C. A. Marinov, 10.1002/cta.4490150107, Int. J. Circuit Theory Appl. 15 (1987), 79-83. (1987) DOI10.1002/cta.4490150107
- C. A. Marinov A. Lehtonen, 10.1109/31.192416, IEEE Trans. Circ. Syst. CAS-36 no. 8 (1989), 1080-1086. (1989) MR1003241DOI10.1109/31.192416
- C. A. Marinov P. Neittaanmaki, Delay time for general distributed-networks with applications to timing analysis of digital MOS integrated circuits, Simulation of Semiconductor Devices and Processes, vol. 2 (K. Board, D. R. J. Owen, eds.), Pineridge Press, 1986, pp. 322-336. (1986)
- C. A. Marinov, P, Neittaanmaki, 10.1109/31.1719, IEEE Trans. Circ. Syst. CAS-35 no. 2 (Feb. 1988), 166-175. (1988) DOI10.1109/31.1719
- C. A. Marinov, P, Niettaanmaki, 10.1002/zamm.19900700821, ZAMM, Z. Angew. Math. Mech. 70 no. 8 (1990), 344-347. (1990) MR1068943DOI10.1002/zamm.19900700821
- C. A. Marinov P. Neittaanmaki, 10.1002/cta.4490180111, Int. J. Circ. Th. Appl. 18 (1990), 99-106. (1990) MR1033396DOI10.1002/cta.4490180111
- G. Morosanu, Nonlinear Evolution Equations and Applications, D. Riedel Publ. Co., Dordrecht, Boston, Lancaster, 1987. (1987) MR0965764
- G. Moroşanu, Mixed problems for a class of nonlinear differential hyperbolic systems, J. Math. Anal. Appl. 33 (1971), 470-485. (1971) MR0641346
- G. Moroşanu C. A. Marinov P. Neittaanmaki, Well-posed nonlinear problems in integrated circuits modelling, Circ. Syst. Sign. Proc. 10 (1991), 53-69. (1991) MR1086946
- G. Prada T. A. Bickart, 10.1016/0022-247X(71)90063-1, J. Math. Anal. Appl. 33 (1971), 367-401. (1971) MR0278837DOI10.1016/0022-247X(71)90063-1
- R. E. Showalter C. H. Snyder, 10.1109/TCS.1986.1085985, IEEE Trans. Circ. Syst. CAS-33 (1986), 707-710. (1986) DOI10.1109/TCS.1986.1085985
- J. Rubinstein P. Penfield M. Horowitz, 10.1109/TCAD.1983.1270037, IEEE Trans. Comp. Aided Design CAD-2 (1983), 202-211. (1983) DOI10.1109/TCAD.1983.1270037
- J. L. Wyatt, Jr., 10.1109/TCS.1985.1085597, IEEE Trans. Circ. Syst. CAS-32 (1985), 28-33. (1985) DOI10.1109/TCS.1985.1085597

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.