Ambiguity Theory, Old and New

Yves André

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 1, page 259-274
  • ISSN: 0392-4041

Abstract

top
This is an introductory survey of some recent developments of "Galois ideas" in Arithmetic, Complex Analysis, Transcendental Number Theory and Quantum Field Theory, and of some of their interrelations.

How to cite

top

André, Yves. "Ambiguity Theory, Old and New." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 259-274. <http://eudml.org/doc/290595>.

@article{André2009,
abstract = {This is an introductory survey of some recent developments of "Galois ideas" in Arithmetic, Complex Analysis, Transcendental Number Theory and Quantum Field Theory, and of some of their interrelations.},
author = {André, Yves},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {259-274},
publisher = {Unione Matematica Italiana},
title = {Ambiguity Theory, Old and New},
url = {http://eudml.org/doc/290595},
volume = {2},
year = {2009},
}

TY - JOUR
AU - André, Yves
TI - Ambiguity Theory, Old and New
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 259
EP - 274
AB - This is an introductory survey of some recent developments of "Galois ideas" in Arithmetic, Complex Analysis, Transcendental Number Theory and Quantum Field Theory, and of some of their interrelations.
LA - eng
UR - http://eudml.org/doc/290595
ER -

References

top
  1. ANDRÉ, YVES, Une introduction aux motifs (motifs purs, motifs mixtes, périodes). Panoramas et Synthèses17. Société Mathématique de France, Paris, 2004. Zbl1060.14001MR2115000
  2. ANDRÉ, YVES, Galois theory, motives, and transcendental number theory, submitted. Zbl1219.11109MR2588609DOI10.4171/073-1/4
  3. BELKALE, PRAKASH - BROSNAN, PATRICK, Periods and Igusa local zeta functions, International Mathematics Research Notices. Vol. 2003, no. 49 (2003), 2655-2670. Zbl1067.11075MR2012522DOI10.1155/S107379280313142X
  4. BLOCH, SPENCER - ESNAULT, HÉLÈNE - KREIMER, DIRK, On motives associated to graph polynomials, Comm. Math. Phys., 267, no. 1 (2006), 181-225. Zbl1109.81059MR2238909DOI10.1007/s00220-006-0040-2
  5. CARTIER, PIERRE, A mad day's work: from Grothendieck to Connes and Kontsevich. The evolution of concepts of space and symmetry [in Les relations entre les mathématiques et la physique théorique, 23-42, Inst. Hautes Âetudes Sci., Bures-sur-Yvette, 1998; Translated from the French by Roger Cooke. Bull. Amer. Math. Soc. (N.S.) 38, no. 4 (2001), 389-408 (electronic). MR1848254DOI10.1090/S0273-0979-01-00913-2
  6. CASALE, GUY, Le groupoïde de Galois de P1 et son irréductibilité, to appear in Commentarii Mathematici Helvetici. MR2410777DOI10.4171/CMH/133
  7. CONNES, ALAIN, Renormalisation et ambiguïté galoisienne. Analyse complexe, systèmes dynamiques, sommabilité des séries divergentes et théories galoisiennes. I. Astérisque No. 296 (2004), 113-143. MR2135686
  8. CONNES, ALAIN - MARCOLLI, MATILDE, Noncommutative geometry, quantum fields and motives. American Mathematical Society Colloquium Publications, 55. American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008. Zbl1159.58004MR2371808
  9. CONNES, ALAIN - MARCOLLI, MATILDE, Renormalization, the Riemann-Hilbert correspondence, and motivic Galois theory. Frontiers in number theory, physics, and geometry. II (Springer, Berlin, 2007), 617-713. Zbl1200.81113MR2290770DOI10.1007/978-3-540-30308-4_13
  10. CONNES, ALAIN - KREIMER, DIRK, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Comm. Math. Phys.210, no. 1 (2000), 249-273. Zbl1032.81026MR1748177DOI10.1007/s002200050779
  11. DELIGNE, PIERRE - GONCHAROV, ALEXANDER, Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. (4) 38, no. 1 (2005), 1-56. Zbl1084.14024MR2136480DOI10.1016/j.ansens.2004.11.001
  12. EHRHARDT, CAROLINE, Evariste Galois et la théorie des groupes. Fortune et réélaborations (1811-1910), thèse ENS (2007). MR2537664
  13. FURUSHO, HIDEKAZU, Pentagon and hexagon equations, arXiv:math/0702128. Zbl1257.17019MR2630048DOI10.4007/annals.2010.171.545
  14. GALOIS, EVARISTE, Œuvres mathématiques, Gauthiers-Villars, 1951. 
  15. GRAY, JEREMY, Linear differential equations and group theory from Riemann to Poincaré. Second edition. Birkhäuser Boston, Inc., Boston, MA, 2000. Zbl0949.01001MR1751835
  16. GROTHENDIECK, ALEXANDRE, Esquisse d'un programme. With an English translation on pp. 243-283. London Math. Soc. Lecture Note Ser., 242, Geometric Galois actions, 1, 5-48, Cambridge Univ. Press, Cambridge, 1997. MR1483107
  17. JORDAN, CAMILLE, Mémoire sur les équations différentielles linéaires à intégrale algébrique (1878), Oeuvres II, 13-140. 
  18. KATZ, NICHOLAS, web page: http://www.monodromy.com/ MR2183396
  19. KONTSEVICH, MAXIM - ZAGIER, DON, Periods. Mathematics unlimited-2001 and beyond (Springer, Berlin, 2001), 771-808. MR1852188
  20. LANG, SERGE, Introduction to transcendental numbers, Addison-Wesley Publishing Co., Reading, Mass-London-Don Mills, Ont. (1966). Zbl0144.04101MR214547
  21. LAUTMAN, ALBERT, Essai sur les notions de structure et d'existence en mathématiques. Reprint, Vrin2006. MR3775305DOI10.1007/s40329-018-0208-6
  22. LOCHAK, PIERRE - SCHNEPS, LEILA, Open problems in Grothendieck-Teichmller theory. Problems on mapping class groups and related topics, 165-186, Proc. Sympos. Pure Math., 74, Amer. Math. Soc., Providence, RI, 2006. Zbl1222.14046MR2264540DOI10.1090/pspum/074/2264540
  23. MALGRANGE, BERNARD, On nonlinear differential Galois theory. Frontiers in mathematical analysis and numerical methods, 185-196, World Sci. Publ., River Edge, NJ, 2004. MR2172556
  24. MORALES-RUIZ, JUAN - RAMIS, JEAN PIERRE, Galoisian obstructions to integrability of Hamiltonian systems. I, II. Methods Appl. Anal., 8, no. 1 (2001), 33-95, 97-111. Zbl1140.37352MR1867495DOI10.4310/MAA.2001.v8.n1.a3
  25. PICARD, EMILE, La vie et l'oeuvre de Joseph Boussinesq, Discours et Notices, Gauthiers-Villars (1936). 
  26. VAN DER PUT, MARIUS - SINGER, MICHAEL, Galois theory of linear differential equations, Springer Grundlehren der math. Wiss.328 (2003). Zbl1036.12008MR1960772DOI10.1007/978-3-642-55750-7
  27. RIEMANN, BERNHARD, Beiträge zur Theorie der durch die Gauss'sche Reihe F ( α , β , γ , x ) darstellbaren Funktionen, Abh. Kon. Ges. Wiss. Gottingen, VII Math. Classe A-22 (1857). 
  28. SCHLESINGER, LUDWIG, Handbuch der Theorie der linearen Differentialgleichungen. In zwei Banden. Band II: Theil 1, (Schluss-) Theil 2. (German) Reprint. Bibliotheca Mathematica Teubneriana, Band 31Johnson Reprint Corp., New York-London1968. MR252187
  29. SCHWARZ, H. A., Über diejenigen Fälle, in welchen die Gaussische hypergeometrische Reihe eine algebraische Funktion ihres vierten Elements darstellt, J. Reine Angew. Math., 75 (1872), 292-335. Zbl05.0146.03MR1579568DOI10.1515/crll.1873.75.292
  30. UMEMURA, HIROSHI, Lie-Drach-Vessiot theory-infinite-dimensional differential Galois theory. CR-geometry and overdetermined systems (Osaka, 1994), 364-385, Adv. Stud. Pure Math., 25, Math. Soc. Japan, Tokyo, 1997. MR1476252
  31. WEIL, ANDRÉ, De la métaphysique aux mathématiques (1960), Oeuvres, vol. II, Springer, 408-412. 
  32. Singularités irrégulières - Correspondance et documents, Deligne, Pierre - Malgrange, Bernard - Ramis, Jean-Pierre, Documents Mathématiques5 (2007), SMF. MR2387754

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.