Full Regularity for Convex Integral Functionals with p ( x ) Growth in Low Dimensions

Jens Habermann

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 3, page 521-541
  • ISSN: 0392-4041

Abstract

top
For Ω 𝐑 n ; n 2 , and N 1 we consider vector valued minimizers u W l o c m , p ( ) ( Ω , 𝐑 N ) of a uniformly convex integral functional of the type [ u , Ω ] := Ω f ( x , D m u ) 𝑑 x , where f is a Carathéorody function satisfying p ( x ) growth conditions with respect to the second variable. We show that if the dimension n is small enough, dependent on the structure conditions of the functional, there holds D k u C l o c 0 , β ( Ω ) for k { 0 , , m - 1 } , for some β , also depending on the structural data, provided that the nonlinearity exponent p is uniformly continuous with modulus of continuity ω satisfying lim sup ρ 0 ω ( ρ ) log ( 1 ρ ) = 0 .

How to cite

top

Habermann, Jens. "Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 521-541. <http://eudml.org/doc/290660>.

@article{Habermann2010,
abstract = {For $\Omega \subset \mathbf\{R\}^\{n\}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_\{loc\}^\{m,p(\cdot)\}(\Omega,\mathbf\{R\}^\{N\})$ of a uniformly convex integral functional of the type $$\mathcal\{F\} \left[ u,\Omega \right] := \int\_\{\Omega\} f(x,D^\{m\}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^\{k\}u \in C\_\{loc\}^\{0,\beta\}(\Omega) \,\, \text\{for\} \,\, k \in \\{0,\cdots,m-1\\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup\_\{\rho\downarrow 0\} \omega(\rho) \log \bigg( \frac\{1\}\{\rho\} \bigg) = 0.$$},
author = {Habermann, Jens},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {521-541},
publisher = {Unione Matematica Italiana},
title = {Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions},
url = {http://eudml.org/doc/290660},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Habermann, Jens
TI - Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 521
EP - 541
AB - For $\Omega \subset \mathbf{R}^{n}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_{loc}^{m,p(\cdot)}(\Omega,\mathbf{R}^{N})$ of a uniformly convex integral functional of the type $$\mathcal{F} \left[ u,\Omega \right] := \int_{\Omega} f(x,D^{m}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^{k}u \in C_{loc}^{0,\beta}(\Omega) \,\, \text{for} \,\, k \in \{0,\cdots,m-1\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup_{\rho\downarrow 0} \omega(\rho) \log \bigg( \frac{1}{\rho} \bigg) = 0.$$
LA - eng
UR - http://eudml.org/doc/290660
ER -

References

top
  1. ACERBI, E. - MINGIONE, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 2 (2001), 121-140. Zbl0984.49020MR1814973DOI10.1007/s002050100117
  2. ACERBI, E. - MINGIONE, G., Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Sc. Norm. Pisa Cl. Sci. (4), 30 (2001), 311-339. Zbl1027.49031MR1895714
  3. ACERBI, E. - MINGIONE, G., Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213-259. Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
  4. ACERBI, E. - MINGIONE, G., Gradient estimates for the p ( x ) -laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. Zbl1093.76003MR2155087DOI10.1515/crll.2005.2005.584.117
  5. CAMPANATO, S., Hölder continuity of the Solutions of Some Non-linear Elliptic Systems, Adv. Math., 48 (1983), 16-43. MR697613DOI10.1016/0001-8708(83)90003-8
  6. CHEN, Y. - LEVINE, S. - RAO, R., Functionals with p ( x ) -growth in image processing, SIAM J. Appl. Math., 66, no. 4 (2006), 1383-1406. Zbl1102.49010MR2246061DOI10.1137/050624522
  7. COSCIA, A. - MINGIONE, G., Hölder continuity of the gradient of p ( x ) harmonic mappings, C. R. Acad. Sci. Paris, 328 (1) (1999), 363-368. Zbl0920.49020MR1675954DOI10.1016/S0764-4442(99)80226-2
  8. CUPINI, G. - FUSCO, N. - PETTI, R., Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. Zbl0949.49022MR1703712DOI10.1006/jmaa.1999.6410
  9. DIENING, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces L p ( ) and W k , p ( ) , Math. Nachr., 268 (2004), 31-43. Zbl1065.46024MR2054530DOI10.1002/mana.200310157
  10. DUZAAR, F. - GASTEL, A. - GROTOWSKI, J., Optimal partial regularity for nonlinear elliptic systems of higher order, J. Math. Sci. Univ. Tokyo, 8 (2001), 463-499. Zbl0995.35017MR1855456
  11. EDMUNDS, D. - RÁKOSNÍK, J., Sobolev embeddings with variable exponent, Stud. Math., 143, No. 3 (2000), 267-293. Zbl0974.46040MR1815935DOI10.4064/sm-143-3-267-293
  12. EDMUNDS, D. - RÁKOSNÍK, J., Sobolev embeddings with variable exponent II, Math. Nachr., 246-27 (2002), 53-67. MR1944549DOI10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
  13. ELEUTERI, M., Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 8, 7-B (2004), 129-157. Zbl1178.49045MR2044264
  14. ELEUTERI, M. - HABERMANN, J., Regularity results for a class of obstacle problems under non standard growth conditions, J. Math. Anal. Appl., 344 (2), (2008), 1120-1142. Zbl1147.49028MR2426338DOI10.1016/j.jmaa.2008.03.068
  15. ESPOSITO, L. - LEONETTI, F. - MINGIONE, G., Sharp regularity for functionals with ( p , q ) growth, J. Differential Equations204, no. 1 (2004), 5-55. Zbl1072.49024MR2076158DOI10.1016/j.jde.2003.11.007
  16. FAN, X. - ZHAO, D., A class of DeGiorgi type and Hölder continuity, Nonlin. Anal., 36 (A) (1999), 295-318. MR1688232DOI10.1016/S0362-546X(97)00628-7
  17. GIUSTI, E., Direct methods in the calculus of variations, Singapore: World Scientific, vii (2003). Zbl1028.49001MR1962933DOI10.1142/9789812795557
  18. HABERMANN, J., Partial regularity for minima of higher order functionals with p ( x ) growth, Manuscripta Math., 126 (1) (2007), 1-40. Zbl1142.49017MR2395246DOI10.1007/s00229-007-0147-6
  19. HABERMANN, J., Calderón-Zygmund estimates for higher order systems with p ( x ) growth, Math. Z., 258 (2) (2008), 427-462. Zbl1147.42004MR2357646DOI10.1007/s00209-007-0180-x
  20. KOVAÂČIK, O. - RÁKOSNÍK, Ž. J., On spaces L p ( x ) and W k , p ( x ) , Czechoslovak Math. J., 41, no. 116 (1991). 
  21. MARCELLINI, P., Regularity and existence of solutions of elliptic equations with p - q -growth conditions, J. Differ. Equations, 90 (1991), 1-30. Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
  22. MUSIELAK, J., Orlicz spaces and modular spaces, Springer, Berlin, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
  23. RAJAGOPAL, K. R. - RŮŽIČKA, M., Mathematical modelling of electro-rheological fluids, Cont. Mech. Therm., 13 (2001), 59-78. 
  24. ZHIKOV, V. V., On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. Zbl0917.49006MR1486765

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.