Full Regularity for Convex Integral Functionals with Growth in Low Dimensions
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 521-541
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topHabermann, Jens. "Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 521-541. <http://eudml.org/doc/290660>.
@article{Habermann2010,
abstract = {For $\Omega \subset \mathbf\{R\}^\{n\}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_\{loc\}^\{m,p(\cdot)\}(\Omega,\mathbf\{R\}^\{N\})$ of a uniformly convex integral functional of the type $$\mathcal\{F\} \left[ u,\Omega \right] := \int\_\{\Omega\} f(x,D^\{m\}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^\{k\}u \in C\_\{loc\}^\{0,\beta\}(\Omega) \,\, \text\{for\} \,\, k \in \\{0,\cdots,m-1\\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup\_\{\rho\downarrow 0\} \omega(\rho) \log \bigg( \frac\{1\}\{\rho\} \bigg) = 0.$$},
author = {Habermann, Jens},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {521-541},
publisher = {Unione Matematica Italiana},
title = {Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions},
url = {http://eudml.org/doc/290660},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Habermann, Jens
TI - Full Regularity for Convex Integral Functionals with $p(x)$ Growth in Low Dimensions
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 521
EP - 541
AB - For $\Omega \subset \mathbf{R}^{n}$; $n \ge 2$, and $N \ge 1$ we consider vector valued minimizers $u \in W_{loc}^{m,p(\cdot)}(\Omega,\mathbf{R}^{N})$ of a uniformly convex integral functional of the type $$\mathcal{F} \left[ u,\Omega \right] := \int_{\Omega} f(x,D^{m}u) \, dx,$$ where $f$ is a Carathéorody function satisfying $p(x)$ growth conditions with respect to the second variable. We show that if the dimension $n$ is small enough, dependent on the structure conditions of the functional, there holds $$D^{k}u \in C_{loc}^{0,\beta}(\Omega) \,\, \text{for} \,\, k \in \{0,\cdots,m-1\},$$ for some $\beta$, also depending on the structural data, provided that the nonlinearity exponent $p$ is uniformly continuous with modulus of continuity $\omega$ satisfying $$\limsup_{\rho\downarrow 0} \omega(\rho) \log \bigg( \frac{1}{\rho} \bigg) = 0.$$
LA - eng
UR - http://eudml.org/doc/290660
ER -
References
top- ACERBI, E. - MINGIONE, G., Regularity results for a class of functionals with nonstandard growth, Arch. Ration. Mech. Anal., 156, 2 (2001), 121-140. Zbl0984.49020MR1814973DOI10.1007/s002050100117
- ACERBI, E. - MINGIONE, G., Regularity results for a class of quasiconvex functionals with nonstandard growth, Ann. Sc. Norm. Pisa Cl. Sci. (4), 30 (2001), 311-339. Zbl1027.49031MR1895714
- ACERBI, E. - MINGIONE, G., Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213-259. Zbl1038.76058MR1930392DOI10.1007/s00205-002-0208-7
- ACERBI, E. - MINGIONE, G., Gradient estimates for the -laplacean system, J. Reine Angew. Math., 584 (2005), 117-148. Zbl1093.76003MR2155087DOI10.1515/crll.2005.2005.584.117
- CAMPANATO, S., Hölder continuity of the Solutions of Some Non-linear Elliptic Systems, Adv. Math., 48 (1983), 16-43. MR697613DOI10.1016/0001-8708(83)90003-8
- CHEN, Y. - LEVINE, S. - RAO, R., Functionals with -growth in image processing, SIAM J. Appl. Math., 66, no. 4 (2006), 1383-1406. Zbl1102.49010MR2246061DOI10.1137/050624522
- COSCIA, A. - MINGIONE, G., Hölder continuity of the gradient of harmonic mappings, C. R. Acad. Sci. Paris, 328 (1) (1999), 363-368. Zbl0920.49020MR1675954DOI10.1016/S0764-4442(99)80226-2
- CUPINI, G. - FUSCO, N. - PETTI, R., Hölder continuity of local minimizers, J. Math. Anal. Appl., 235 (1999), 578-597. Zbl0949.49022MR1703712DOI10.1006/jmaa.1999.6410
- DIENING, L., Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces and , Math. Nachr., 268 (2004), 31-43. Zbl1065.46024MR2054530DOI10.1002/mana.200310157
- DUZAAR, F. - GASTEL, A. - GROTOWSKI, J., Optimal partial regularity for nonlinear elliptic systems of higher order, J. Math. Sci. Univ. Tokyo, 8 (2001), 463-499. Zbl0995.35017MR1855456
- EDMUNDS, D. - RÁKOSNÍK, J., Sobolev embeddings with variable exponent, Stud. Math., 143, No. 3 (2000), 267-293. Zbl0974.46040MR1815935DOI10.4064/sm-143-3-267-293
- EDMUNDS, D. - RÁKOSNÍK, J., Sobolev embeddings with variable exponent II, Math. Nachr., 246-27 (2002), 53-67. MR1944549DOI10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO;2-T
- ELEUTERI, M., Hölder continuity results for a class of functionals with non standard growth, Boll. Unione Mat. Ital., 8, 7-B (2004), 129-157. Zbl1178.49045MR2044264
- ELEUTERI, M. - HABERMANN, J., Regularity results for a class of obstacle problems under non standard growth conditions, J. Math. Anal. Appl., 344 (2), (2008), 1120-1142. Zbl1147.49028MR2426338DOI10.1016/j.jmaa.2008.03.068
- ESPOSITO, L. - LEONETTI, F. - MINGIONE, G., Sharp regularity for functionals with growth, J. Differential Equations204, no. 1 (2004), 5-55. Zbl1072.49024MR2076158DOI10.1016/j.jde.2003.11.007
- FAN, X. - ZHAO, D., A class of DeGiorgi type and Hölder continuity, Nonlin. Anal., 36 (A) (1999), 295-318. MR1688232DOI10.1016/S0362-546X(97)00628-7
- GIUSTI, E., Direct methods in the calculus of variations, Singapore: World Scientific, vii (2003). Zbl1028.49001MR1962933DOI10.1142/9789812795557
- HABERMANN, J., Partial regularity for minima of higher order functionals with growth, Manuscripta Math., 126 (1) (2007), 1-40. Zbl1142.49017MR2395246DOI10.1007/s00229-007-0147-6
- HABERMANN, J., Calderón-Zygmund estimates for higher order systems with growth, Math. Z., 258 (2) (2008), 427-462. Zbl1147.42004MR2357646DOI10.1007/s00209-007-0180-x
- KOVAÂČIK, O. - RÁKOSNÍK, Ž. J., On spaces and , Czechoslovak Math. J., 41, no. 116 (1991).
- MARCELLINI, P., Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differ. Equations, 90 (1991), 1-30. Zbl0724.35043MR1094446DOI10.1016/0022-0396(91)90158-6
- MUSIELAK, J., Orlicz spaces and modular spaces, Springer, Berlin, 1983. Zbl0557.46020MR724434DOI10.1007/BFb0072210
- RAJAGOPAL, K. R. - RŮŽIČKA, M., Mathematical modelling of electro-rheological fluids, Cont. Mech. Therm., 13 (2001), 59-78.
- ZHIKOV, V. V., On some variational problems, Russian J. Math. Phys., 5 (1997), 105-116. Zbl0917.49006MR1486765
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.