Scale-Transformations of Maximal Monotone Relations in View of Homogenization

Augusto Visintin

Bollettino dell'Unione Matematica Italiana (2010)

  • Volume: 3, Issue: 3, page 591-601
  • ISSN: 0392-4041

Abstract

top
On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.

How to cite

top

Visintin, Augusto. "Scale-Transformations of Maximal Monotone Relations in View of Homogenization." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 591-601. <http://eudml.org/doc/290672>.

@article{Visintin2010,
abstract = {On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {591-601},
publisher = {Unione Matematica Italiana},
title = {Scale-Transformations of Maximal Monotone Relations in View of Homogenization},
url = {http://eudml.org/doc/290672},
volume = {3},
year = {2010},
}

TY - JOUR
AU - Visintin, Augusto
TI - Scale-Transformations of Maximal Monotone Relations in View of Homogenization
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 591
EP - 601
AB - On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.
LA - eng
UR - http://eudml.org/doc/290672
ER -

References

top
  1. ALLAIRE, G., Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23 (1992), 1482-1518. Zbl0770.35005MR1185639DOI10.1137/0523084
  2. BARBU, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010. Zbl1197.35002MR2582280DOI10.1007/978-1-4419-5542-5
  3. BREZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973. Zbl0252.47055MR348562
  4. BREZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps, and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974. Zbl0332.49032MR637214
  5. DAL MASO, G., An Introduction to Γ -Convergence. Birkhäuser, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  6. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) (1975), 842-850. MR448194
  7. EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris1974. MR463993
  8. FITZPATRICK, S., Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65; Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. Zbl0669.47029MR1009594
  9. MARCELLINI, P., Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. Zbl0395.49007MR515958DOI10.1007/BF02417888
  10. MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. Zbl1083.47036MR2128696DOI10.1007/s11228-004-4170-4
  11. NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. Zbl0345.73037MR418609
  12. NGUETSENG, G., A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20 (1989), 608-623. Zbl0688.35007MR990867DOI10.1137/0520043
  13. ROCKAFELLAR, R. T., Convex Analysis. Princeton University Press, Princeton1969. MR274683
  14. VISINTIN, A., Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Continuum Mech. Thermodyn., 18 (2006), 223-252. Zbl1160.74331MR2245987DOI10.1007/s00161-006-0025-6
  15. VISINTIN, A., Homogenization of the nonlinear Maxwell model of visco-elasticity and of the Prandtl-Reuss model of elasto-plasticity. Royal Soc. Edinburgh Proc. A, 138 (2008), 1-39. MR2488064DOI10.1017/S0308210506000709
  16. VISINTIN, A., Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl., 89 (2008), 477-504. Zbl1166.35004MR2416672DOI10.1016/j.matpur.2008.02.002
  17. VISINTIN, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. Zbl1191.47067MR2489147
  18. VISINTIN, A., Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations, 36 (2009), 565-590. Zbl1184.35041MR2558331DOI10.1007/s00526-009-0245-2
  19. VISINTIN, A., Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. (in press). Zbl1233.78043MR2721590DOI10.1007/s00205-010-0296-8
  20. VISINTIN, A., Homogenization of processes in nonlinear visco-elastic composites. Ann. Scuola Norm. Sup. Pisa (in press). Zbl1242.35033MR2905380
  21. VISINTIN, A., A minimization principle for monotone equations. (submitted). 
  22. VISINTIN, A., Scale-transformations and homogenization of maximal monotone relations, with applications. (forthcoming). Zbl1302.35042MR3086566
  23. VISINTIN, A., Homogenization of a parabolic model of ferromagnetism. (forthcoming). Zbl1213.35066MR2737216DOI10.1016/j.jde.2010.09.016
  24. ZEIDLER, E., Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear Monotone Operators. Springer, New York1990. Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0985-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.