Scale-Transformations of Maximal Monotone Relations in View of Homogenization
Bollettino dell'Unione Matematica Italiana (2010)
- Volume: 3, Issue: 3, page 591-601
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVisintin, Augusto. "Scale-Transformations of Maximal Monotone Relations in View of Homogenization." Bollettino dell'Unione Matematica Italiana 3.3 (2010): 591-601. <http://eudml.org/doc/290672>.
@article{Visintin2010,
abstract = {On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {591-601},
publisher = {Unione Matematica Italiana},
title = {Scale-Transformations of Maximal Monotone Relations in View of Homogenization},
url = {http://eudml.org/doc/290672},
volume = {3},
year = {2010},
}
TY - JOUR
AU - Visintin, Augusto
TI - Scale-Transformations of Maximal Monotone Relations in View of Homogenization
JO - Bollettino dell'Unione Matematica Italiana
DA - 2010/10//
PB - Unione Matematica Italiana
VL - 3
IS - 3
SP - 591
EP - 601
AB - On the basis of Fitzpatrick's variational formulation of maximal monotone relations, and of Nguetseng's two-scale approach to homogenization, scale-transformations have recently been introduced and used for the periodic homogenization of quasilinear P.D.E.s. This note illustrates some basic results of this method.
LA - eng
UR - http://eudml.org/doc/290672
ER -
References
top- ALLAIRE, G., Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23 (1992), 1482-1518. Zbl0770.35005MR1185639DOI10.1137/0523084
- BARBU, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010. Zbl1197.35002MR2582280DOI10.1007/978-1-4419-5542-5
- BREZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973. Zbl0252.47055MR348562
- BREZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps, and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974. Zbl0332.49032MR637214
- DAL MASO, G., An Introduction to -Convergence. Birkhäuser, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., 58 (8) (1975), 842-850. MR448194
- EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnelles. Dunod Gauthier-Villars, Paris1974. MR463993
- FITZPATRICK, S., Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65; Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. Zbl0669.47029MR1009594
- MARCELLINI, P., Periodic solutions and homogenization of nonlinear variational problems. Ann. Mat. Pura Appl., 117 (1978), 139-152. Zbl0395.49007MR515958DOI10.1007/BF02417888
- MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. Zbl1083.47036MR2128696DOI10.1007/s11228-004-4170-4
- NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. Zbl0345.73037MR418609
- NGUETSENG, G., A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20 (1989), 608-623. Zbl0688.35007MR990867DOI10.1137/0520043
- ROCKAFELLAR, R. T., Convex Analysis. Princeton University Press, Princeton1969. MR274683
- VISINTIN, A., Homogenization of the nonlinear Kelvin-Voigt model of viscoelasticity and of the Prager model of plasticity. Continuum Mech. Thermodyn., 18 (2006), 223-252. Zbl1160.74331MR2245987DOI10.1007/s00161-006-0025-6
- VISINTIN, A., Homogenization of the nonlinear Maxwell model of visco-elasticity and of the Prandtl-Reuss model of elasto-plasticity. Royal Soc. Edinburgh Proc. A, 138 (2008), 1-39. MR2488064DOI10.1017/S0308210506000709
- VISINTIN, A., Homogenization of nonlinear visco-elastic composites. J. Math. Pures Appl., 89 (2008), 477-504. Zbl1166.35004MR2416672DOI10.1016/j.matpur.2008.02.002
- VISINTIN, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. Zbl1191.47067MR2489147
- VISINTIN, A., Scale-integration and scale-disintegration in nonlinear homogenization. Calc. Var. Partial Differential Equations, 36 (2009), 565-590. Zbl1184.35041MR2558331DOI10.1007/s00526-009-0245-2
- VISINTIN, A., Scale-transformations in the homogenization of nonlinear magnetic processes. Archive Rat. Mech. Anal. (in press). Zbl1233.78043MR2721590DOI10.1007/s00205-010-0296-8
- VISINTIN, A., Homogenization of processes in nonlinear visco-elastic composites. Ann. Scuola Norm. Sup. Pisa (in press). Zbl1242.35033MR2905380
- VISINTIN, A., A minimization principle for monotone equations. (submitted).
- VISINTIN, A., Scale-transformations and homogenization of maximal monotone relations, with applications. (forthcoming). Zbl1302.35042MR3086566
- VISINTIN, A., Homogenization of a parabolic model of ferromagnetism. (forthcoming). Zbl1213.35066MR2737216DOI10.1016/j.jde.2010.09.016
- ZEIDLER, E., Nonlinear Functional Analysis and its Applications. Vol. II/B: Nonlinear Monotone Operators. Springer, New York1990. Zbl0684.47029MR1033498DOI10.1007/978-1-4612-0985-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.