On the Structural Stability of Monotone Flows (Running head: Structural Stability)
Bollettino dell'Unione Matematica Italiana (2011)
- Volume: 4, Issue: 3, page 471-479
- ISSN: 0392-4041
Access Full Article
topAbstract
topHow to cite
topVisintin, Augusto. "On the Structural Stability of Monotone Flows (Running head: Structural Stability)." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 471-479. <http://eudml.org/doc/290730>.
@article{Visintin2011,
abstract = {Flows of the form $D_tu + \alpha(u) \ni h$, with $\alpha$ maximal monotone, are here formulated as null-minimization problems via Fitzpatrick's theory. By means of De Giorgi's notion of $\Gamma$-convergence, we study the compactness and the structural stability of these flows with respect to variations of the source $h$ and of the operator $\alpha$.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {471-479},
publisher = {Unione Matematica Italiana},
title = {On the Structural Stability of Monotone Flows (Running head: Structural Stability)},
url = {http://eudml.org/doc/290730},
volume = {4},
year = {2011},
}
TY - JOUR
AU - Visintin, Augusto
TI - On the Structural Stability of Monotone Flows (Running head: Structural Stability)
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 471
EP - 479
AB - Flows of the form $D_tu + \alpha(u) \ni h$, with $\alpha$ maximal monotone, are here formulated as null-minimization problems via Fitzpatrick's theory. By means of De Giorgi's notion of $\Gamma$-convergence, we study the compactness and the structural stability of these flows with respect to variations of the source $h$ and of the operator $\alpha$.
LA - eng
UR - http://eudml.org/doc/290730
ER -
References
top- AMBROSETTI, A. - SBORDONE, C., -convergenza e G-convergenza per problemi non lineari di tipo ellittico. Boll. Un. Mat. Ital. (5), 13-A (1976), 352-362 Zbl0345.49004MR487703
- ATTOUCH, H., Variational Convergence for Functions and Operators. Pitman, Boston1984 Zbl0561.49012MR773850
- BREZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), 971-974, and ibid. 1197-1198. Zbl0332.49032MR637214
- DAL MASO, G., An Introduction to -Convergence. Birkhäuser, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
- DE GIORGI, E. - FRANZON, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. MR448194
- FITZPATRICK, S., Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. Zbl0669.47029MR1009594
- GHOUSSOUB, N., A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. Zbl1177.35093MR2447965DOI10.1007/s11784-008-0083-4
- GHOUSSOUB, N., Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. Zbl1357.49004MR2458698
- NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976). A1035-A1038. Zbl0345.73037MR418609
- STEFANELLI, U., The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. Zbl1194.35214MR2425653DOI10.1137/070684574
- TARTAR, L., The General Theory of Homogenization. A Personalized Introduction. Springer, Berlin; UMI, Bologna, 2009. Zbl1188.35004MR2582099DOI10.1007/978-3-642-05195-1
- VISINTIN, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. Zbl1191.47067MR2489147
- VISINTIN, A., Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., (9), III (2010), 591-601. MR2742783
- VISINTIN, A., Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. Zbl1213.35066MR2737216DOI10.1016/j.jde.2010.09.016
- VISINTIN, A., Structural stability of doubly nonlinear flows. Boll. Un. Mat. Ital., (9), IV (2011) (in press). Zbl1235.35032MR2906767
- VISINTIN, A., Variational formulation and structural stability of monotone equations. (forthcoming). Zbl1304.47073MR3044140DOI10.1007/s00526-012-0519-y
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.