Structural Stability of Doubly-Nonlinear Flows

Augusto Visintin

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 3, page 363-391
  • ISSN: 0392-4041

Abstract

top
To any maximal monotone operator α : V 𝒫 ( V ) ( V being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function f : V × V { + } such that f ( v , v ) v , v ( v , v ) , f ( v , v ) = v , v v α ( v ) . On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: D t α ( u ) - div γ ( u ) h , α ( D t u ) - div γ ( u ) h ; here α and γ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators D t , , α and γ .

How to cite

top

Visintin, Augusto. "Structural Stability of Doubly-Nonlinear Flows." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 363-391. <http://eudml.org/doc/290745>.

@article{Visintin2011,
abstract = {To any maximal monotone operator $\alpha \colon V \to \mathcal\{P\}(V)$ ($V$ being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function $f \colon V \times V' \to \mathbb\{R\} \cup \\{+\infty\\}$ such that \begin\{equation*\} \tag\{*\} f(v,v') \geq \langle v', v \rangle \quad \forall (v, v'), \qquad f(v,v') = \langle v', v \rangle \iff v' \in \alpha(v).\end\{equation*\} On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: \begin\{equation*\} \tag\{**\} D\_\{t\}\alpha(u) - \operatorname\{div\} \vec\{\gamma\}(\nabla u) \ni h, \qquad \alpha(D\_\{t\}u) - \operatorname\{div\} \vec\{\gamma\}(\nabla u) \ni h; \end\{equation*\} here $\alpha$ and $\vec\{\gamma\}$ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators $D_\{t\}$, $\nabla$, $\alpha$ and $\vec\{\gamma\}$.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {363-391},
publisher = {Unione Matematica Italiana},
title = {Structural Stability of Doubly-Nonlinear Flows},
url = {http://eudml.org/doc/290745},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Visintin, Augusto
TI - Structural Stability of Doubly-Nonlinear Flows
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 363
EP - 391
AB - To any maximal monotone operator $\alpha \colon V \to \mathcal{P}(V)$ ($V$ being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function $f \colon V \times V' \to \mathbb{R} \cup \{+\infty\}$ such that \begin{equation*} \tag{*} f(v,v') \geq \langle v', v \rangle \quad \forall (v, v'), \qquad f(v,v') = \langle v', v \rangle \iff v' \in \alpha(v).\end{equation*} On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: \begin{equation*} \tag{**} D_{t}\alpha(u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h, \qquad \alpha(D_{t}u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h; \end{equation*} here $\alpha$ and $\vec{\gamma}$ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators $D_{t}$, $\nabla$, $\alpha$ and $\vec{\gamma}$.
LA - eng
UR - http://eudml.org/doc/290745
ER -

References

top
  1. AIZICOVICI, S. - HOKKANEN, V.-M., Doubly nonlinear equations with unbounded operators. Nonlinear Anal., 58 (2004), 591-607. Zbl1073.34076MR2078737DOI10.1016/j.na.2003.10.029
  2. AIZICOVICI, S. - HOKKANEN, V.-M., Doubly nonlinear periodic problems with unbounded operators. J. Math. Anal. Appl., 292 (2004), 540-557. Zbl1064.34039MR2047630DOI10.1016/j.jmaa.2003.12.039
  3. AIZICOVICI, S. - YAN, Q., Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J., 7 (1997), 1-17. Zbl0871.34037MR1427016
  4. AKAGI, G., Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differential Equations, 231 (2006), 32-56. Zbl1115.34059MR2287876DOI10.1016/j.jde.2006.04.006
  5. ALT, H. W. - LUCKHAUS, S., Quasilinear elliptic-parabolic differential equations. Math. Z., 183 (1983), 311-341. Zbl0497.35049MR706391DOI10.1007/BF01176474
  6. ARAI, T., On the existence of the solution for φ ( u ( t ) ) + ψ ( u ( t ) ) f ( t ) . J. Fac. Sci. Univ. Tokyo. Sec. IA Math., 26 (1979), 75-96. Zbl0418.35056MR539774
  7. ATTOUCH, H., Variational Convergence for Functions and Operators. Pitman, Boston1984. Zbl0561.49012MR773850
  8. AUCHMUTY, G., Saddle-points and existence-uniqueness for evolution equations. Differential Integral Equations, 6 (1993), 1161-117. Zbl0813.35026MR1230489
  9. BARBU, V., Existence theorems for a class of two point boundary problems. J. Differential Equations, 17 (1975), 236-257. Zbl0295.35074MR380532DOI10.1016/0022-0396(75)90043-1
  10. BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976. Zbl0328.47035MR390843
  11. BARBU, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010. Zbl1197.35002MR2582280DOI10.1007/978-1-4419-5542-5
  12. BLANCHARD, D. - FRANCFORT, G., Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. S.I.A.M. J. Math. Anal., 19 (1988), 1032-1056. Zbl0685.35052MR957665DOI10.1137/0519070
  13. BLANCHARD, D. - FRANCFORT, G., A few results on a class of degenerate parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 213-249. Zbl0778.35046MR1129302
  14. BLANCHARD, D. - PORRETTA, A., Stefan problems with nonlinear diffusion and convection. J. Differential Equations, 210 (2005), 383-428. Zbl1075.35112MR2119989DOI10.1016/j.jde.2004.06.012
  15. BREZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973. Zbl0252.47055MR348562
  16. BREZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976) 971-974, and ibid. 1197-1198. Zbl0332.49032MR637214
  17. BULIGA, M. - DE SAXCÉ, G. - VALLÉE, C., Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal., 15 (2008), 87-104. Zbl1133.49018MR2389005
  18. BURACHIK, R. S. - SVAITER, B. F., Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis, 10 (2002), 297-316. Zbl1033.47036MR1934748DOI10.1023/A:1020639314056
  19. BURACHIK, R. S. - SVAITER, B. F., Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc., 131 (2003), 2379-2383. Zbl1019.47038MR1974634DOI10.1090/S0002-9939-03-07053-9
  20. CARRILLO, J., Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), 269-361. Zbl0935.35056MR1709116DOI10.1007/s002050050152
  21. CARRILLO, J. - WITTBOLD, P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations, 156 (1999), 93-121. Zbl0932.35129MR1701806DOI10.1006/jdeq.1998.3597
  22. COLLI, P., On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9 (1992), 181-203. Zbl0757.34051MR1170721DOI10.1007/BF03167565
  23. COLLI, P. - VISINTIN, A., On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. Zbl0707.34053MR1070845DOI10.1080/03605309908820706
  24. DAL MASO, G., An Introduction to Γ -Convergence. Birkhäuser, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  25. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. MR448194
  26. DI BENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal., 12 (1981), 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
  27. EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnelles. DunodGauthier-Villars, Paris1974. MR463993
  28. FENCHEL, W., Convex Cones, Sets, and Functions. Princeton Univ., 1953. Zbl0053.12203
  29. FITZPATRICK, S., Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. Zbl0669.47029MR1009594
  30. GAJEWSKI, H., On a variant of monotonicity and its application to differential equations. Nonlinear Anal., 22 (1994), 73-80. Zbl0821.35002MR1256171DOI10.1016/0362-546X(94)90006-X
  31. GAJEWSKI, H. - GRÖGER, K. - ZACHARIAS, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin1974. MR636412
  32. GAJEWSKI, H. - ZACHARIAS, K., Über eine Klasse nichtlinearer Differentialgleichun- gen im Hilbert-Raum. J. Math. Anal. Appl., 44 (1973), 71-87. MR335988DOI10.1016/0022-247X(73)90025-5
  33. GAJEWSKI, H. - ZACHARIAS, K., Über eine weitere Klasse nichtlinearer Differential- gleichungen im Hilbert-Raum. Math. Nachr., 57 (1973), 127-140. Zbl0289.34088MR336476DOI10.1002/mana.19730570107
  34. GHOUSSOUB, N., A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. Zbl1177.35093MR2447965DOI10.1007/s11784-008-0083-4
  35. GHOUSSOUB, N., Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. Zbl1357.49004MR2458698
  36. GHOUSSOUB, N. - TZOU, L., A variational principle for gradient flows. Math. Ann., 330 (2004), 519-549. Zbl1062.35008MR2099192DOI10.1007/s00208-004-0558-6
  37. GRANGE, O. - MIGNOT, F., Sur la résolution d'une équation et une inéquation paraboliques non linéaires. J. Funct. Anal., 11 (1972), 77-92. Zbl0251.35055MR350207
  38. GROÈGER, K. - NEČAS, J., On a class of nonlinear initial value problems in Hilbert spaces. Math. Nachr., 93 (1979), 21-31. MR579840DOI10.1002/mana.19790930103
  39. IGBIDA, N. - URBANO, J. M., Uniqueness for nonlinear degenerate problems. Nonlinear Differential Equations Appl., 10 (2003), 287-307. Zbl1024.35054MR1994812DOI10.1007/s00030-003-1030-0
  40. JIAN, H., On the homogenization of degenerate parabolic equations. Acta Math. Appl. Sinica, 16 (2000), 100-110. Zbl0957.35076MR1757328DOI10.1007/BF02670970
  41. MARTINEZ-LEGAZ, J.-E. - THÉRA, M., A convex representation of maximal monotone operators. J. Nonlinear Convex Anal., 2 (2001), 243-247. Zbl0999.47037MR1848704
  42. MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. Zbl1083.47036MR2128696DOI10.1007/s11228-004-4170-4
  43. MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc., 136 (2008), 873-878. Zbl1133.47040MR2361859DOI10.1090/S0002-9939-07-09176-9
  44. MIELKE, A., Evolution of rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations. Vol. II (C. Dafermos and E. Feireisel, eds.). Elsevier/North-Holland, Amsterdam, (2005), 461-559. Zbl1120.47062MR2182832
  45. MIELKE, A. - THEIL, F., On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. Zbl1061.35182MR2210284DOI10.1007/s00030-003-1052-7
  46. MIELKE, A. - THEIL, F. - LEVITAS, V., A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162 (2002), 137-177. Zbl1012.74054MR1897379DOI10.1007/s002050200194
  47. MÜLLER, I., A History of Thermodynamics. Springer, Berlin2007. 
  48. MURAT, F., Compacité par compensation. Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. Zbl0399.46022MR506997
  49. NANDAKUMARAN, A. K. - RAJESH, M., Homogenization of a nonlinear degenerate parabolic differential equation. Electron. J. Differential Equations, 1 (2001), 19. Zbl1052.35023MR1824787
  50. NANDAKUMARAN, A. K. - RAJESH, M., Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 195-207. Zbl1199.35016MR1894553DOI10.1007/BF02829651
  51. NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. Zbl0345.73037MR418609
  52. OTTO, F., L 1 -contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv. Math. Sci. Appl., 7 (1997), 537-553. Zbl0888.35085MR1476263
  53. PENOT, J.-P., A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. Zbl1045.47042MR2059661DOI10.1016/j.crma.2004.03.017
  54. PENOT, J.-P., The relevance of convex analysis for the study of monotonicity. Nonlinear Anal., 58 (2004), 855-871. Zbl1078.47008MR2086060DOI10.1016/j.na.2004.05.018
  55. ROSSI, R. - MIELKE, A. - SAVARÉ, G. , A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (5) (2008), 97-169. Zbl1183.35164MR2413674
  56. ROUBÍČEK, T., Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel2005. Zbl1087.35002
  57. SCHIMPERNA, G. - SEGATTI, A. - STEFANELLI, U., Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst., 18 (2007), 15-38. Zbl1195.35185MR2276484DOI10.3934/dcds.2007.18.15
  58. SENBA, T., On some nonlinear evolution equation. Funkcial. Ekvac., 29 (1986), 243-257. Zbl0627.35045MR904541
  59. SIMON, J., Compact sets in the space L p ( 0 ; T ; B ) . Ann. Mat. Pura Appl., 146 (1987), 65-96. Zbl0629.46031MR916688DOI10.1007/BF01762360
  60. STEFANELLI, U., The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. Zbl1194.35214MR2425653DOI10.1137/070684574
  61. TARTAR, L., The General Theory of Homogenization. A Personalized Introduction. SpringerBerlin; UMI, Bologna, 2009. Zbl1188.35004MR2582099DOI10.1007/978-3-642-05195-1
  62. VISINTIN, A., Models of Phase Transitions. Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5
  63. VISINTIN, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. Zbl1191.47067MR2489147
  64. VISINTIN, A., Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., III (9) (2010), 591-601. MR2742783
  65. VISINTIN, A., Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. Zbl1213.35066MR2737216DOI10.1016/j.jde.2010.09.016
  66. VISINTIN, A., Scale-transformations and homogenization of maximal monotone relations, and applications. (forthcoming). Zbl1302.35042MR3086566
  67. VISINTIN, A., Variational formulation and structural stability of monotone equations. (forthcoming). Zbl1304.47073MR3044140DOI10.1007/s00526-012-0519-y
  68. VISINTIN, A., Structural stability of rate-independent nonpotential flows. (forthcoming). Zbl1262.35141MR2983478DOI10.3934/dcdss.2013.6.257

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.