Structural Stability of Doubly-Nonlinear Flows

Augusto Visintin

Bollettino dell'Unione Matematica Italiana (2011)

  • Volume: 4, Issue: 3, page 363-391
  • ISSN: 0392-4041

Abstract

top
To any maximal monotone operator \alpha\colon V\to\mathcal{P}(V) (V being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function f\colon V\times V^{\prime}\to\mathbb{R}\cup\{+\infty\} such that f(v,v^{\prime})\geq\langle v^{\prime},v\rangle\quad\forall(v,v^{\prime}),% \qquad f(v,v^{\prime})=\langle v^{\prime},v\rangle\iff v^{\prime}\in\alpha(v). On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: D_{t}\alpha(u)-\operatorname{div}\vec{\gamma}(\nabla u)\ni h,\qquad\alpha(D_{t% }u)-\operatorname{div}\vec{\gamma}(\nabla u)\ni h; here \alpha and \vec{\gamma} are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators D_{t}, \nabla, \alpha and \vec{\gamma}.

How to cite

top

Visintin, Augusto. "Structural Stability of Doubly-Nonlinear Flows." Bollettino dell'Unione Matematica Italiana 4.3 (2011): 363-391. <http://eudml.org/doc/290745>.

@article{Visintin2011,
abstract = {To any maximal monotone operator $\alpha \colon V \to \mathcal\{P\}(V)$ ($V$ being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function $f \colon V \times V' \to \mathbb\{R\} \cup \\{+\infty\\}$ such that \begin\{equation*\} \tag\{*\} f(v,v') \geq \langle v', v \rangle \quad \forall (v, v'), \qquad f(v,v') = \langle v', v \rangle \iff v' \in \alpha(v).\end\{equation*\} On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: \begin\{equation*\} \tag\{**\} D\_\{t\}\alpha(u) - \operatorname\{div\} \vec\{\gamma\}(\nabla u) \ni h, \qquad \alpha(D\_\{t\}u) - \operatorname\{div\} \vec\{\gamma\}(\nabla u) \ni h; \end\{equation*\} here $\alpha$ and $\vec\{\gamma\}$ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators $D_\{t\}$, $\nabla$, $\alpha$ and $\vec\{\gamma\}$.},
author = {Visintin, Augusto},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {363-391},
publisher = {Unione Matematica Italiana},
title = {Structural Stability of Doubly-Nonlinear Flows},
url = {http://eudml.org/doc/290745},
volume = {4},
year = {2011},
}

TY - JOUR
AU - Visintin, Augusto
TI - Structural Stability of Doubly-Nonlinear Flows
JO - Bollettino dell'Unione Matematica Italiana
DA - 2011/10//
PB - Unione Matematica Italiana
VL - 4
IS - 3
SP - 363
EP - 391
AB - To any maximal monotone operator $\alpha \colon V \to \mathcal{P}(V)$ ($V$ being a real Banach space),in [MR1009594] S. Fitzpatrick associated a lower semicontinuous and convex function $f \colon V \times V' \to \mathbb{R} \cup \{+\infty\}$ such that \begin{equation*} \tag{*} f(v,v') \geq \langle v', v \rangle \quad \forall (v, v'), \qquad f(v,v') = \langle v', v \rangle \iff v' \in \alpha(v).\end{equation*} On this basis, in this work two classes of doubly-nonlinear evolutionary equations are formulated as minimization principles: \begin{equation*} \tag{**} D_{t}\alpha(u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h, \qquad \alpha(D_{t}u) - \operatorname{div} \vec{\gamma}(\nabla u) \ni h; \end{equation*} here $\alpha$ and $\vec{\gamma}$ are maximal monotone mappings, and one of them is assumed to be cyclically monotone. For associated initial- and boundary-value problems, existence of a solution is proved, as well as the stability with respect to variations of the data and of the operators $D_{t}$, $\nabla$, $\alpha$ and $\vec{\gamma}$.
LA - eng
UR - http://eudml.org/doc/290745
ER -

References

top
  1. AIZICOVICI, S. - HOKKANEN, V.-M., Doubly nonlinear equations with unbounded operators. Nonlinear Anal., 58 (2004), 591-607. Zbl1073.34076MR2078737DOI10.1016/j.na.2003.10.029
  2. AIZICOVICI, S. - HOKKANEN, V.-M., Doubly nonlinear periodic problems with unbounded operators. J. Math. Anal. Appl., 292 (2004), 540-557. Zbl1064.34039MR2047630DOI10.1016/j.jmaa.2003.12.039
  3. AIZICOVICI, S. - YAN, Q., Convergence theorems for abstract doubly nonlinear differential equations. Panamer. Math. J., 7 (1997), 1-17. Zbl0871.34037MR1427016
  4. AKAGI, G., Doubly nonlinear evolution equations governed by time-dependent subdifferentials in reflexive Banach spaces. J. Differential Equations, 231 (2006), 32-56. Zbl1115.34059MR2287876DOI10.1016/j.jde.2006.04.006
  5. ALT, H. W. - LUCKHAUS, S., Quasilinear elliptic-parabolic differential equations. Math. Z., 183 (1983), 311-341. Zbl0497.35049MR706391DOI10.1007/BF01176474
  6. ARAI, T., On the existence of the solution for \partial\varphi(u^{\prime}(t))+\partial\psi(u(t))\ni f(t). J. Fac. Sci. Univ. Tokyo. Sec. IA Math., 26 (1979), 75-96. Zbl0418.35056MR539774
  7. ATTOUCH, H., Variational Convergence for Functions and Operators. Pitman, Boston1984. Zbl0561.49012MR773850
  8. AUCHMUTY, G., Saddle-points and existence-uniqueness for evolution equations. Differential Integral Equations, 6 (1993), 1161-117. Zbl0813.35026MR1230489
  9. BARBU, V., Existence theorems for a class of two point boundary problems. J. Differential Equations, 17 (1975), 236-257. Zbl0295.35074MR380532DOI10.1016/0022-0396(75)90043-1
  10. BARBU, V., Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden1976. Zbl0328.47035MR390843
  11. BARBU, V., Nonlinear Differential Equations of Monotone Types in Banach Spaces. Springer, Berlin2010. Zbl1197.35002MR2582280DOI10.1007/978-1-4419-5542-5
  12. BLANCHARD, D. - FRANCFORT, G., Study of a doubly nonlinear heat equation with no growth assumptions on the parabolic term. S.I.A.M. J. Math. Anal., 19 (1988), 1032-1056. Zbl0685.35052MR957665DOI10.1137/0519070
  13. BLANCHARD, D. - FRANCFORT, G., A few results on a class of degenerate parabolic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 18 (1991), 213-249. Zbl0778.35046MR1129302
  14. BLANCHARD, D. - PORRETTA, A., Stefan problems with nonlinear diffusion and convection. J. Differential Equations, 210 (2005), 383-428. Zbl1075.35112MR2119989DOI10.1016/j.jde.2004.06.012
  15. BREZIS, H., Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert. North-Holland, Amsterdam1973. Zbl0252.47055MR348562
  16. BREZIS, H. - EKELAND, I., Un principe variationnel associé à certaines équations paraboliques. I. Le cas indépendant du temps and II. Le cas dépendant du temps. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976) 971-974, and ibid. 1197-1198. Zbl0332.49032MR637214
  17. BULIGA, M. - DE SAXCÉ, G. - VALLÉE, C., Existence and construction of bipotentials for graphs of multivalued laws. J. Convex Anal., 15 (2008), 87-104. Zbl1133.49018MR2389005
  18. BURACHIK, R. S. - SVAITER, B. F., Maximal monotone operators, convex functions, and a special family of enlargements. Set-Valued Analysis, 10 (2002), 297-316. Zbl1033.47036MR1934748DOI10.1023/A:1020639314056
  19. BURACHIK, R. S. - SVAITER, B. F., Maximal monotonicity, conjugation and the duality product. Proc. Amer. Math. Soc., 131 (2003), 2379-2383. Zbl1019.47038MR1974634DOI10.1090/S0002-9939-03-07053-9
  20. CARRILLO, J., Entropy solutions for nonlinear degenerate problems. Arch. Ration. Mech. Anal., 147 (1999), 269-361. Zbl0935.35056MR1709116DOI10.1007/s002050050152
  21. CARRILLO, J. - WITTBOLD, P., Uniqueness of renormalized solutions of degenerate elliptic-parabolic problems. J. Differential Equations, 156 (1999), 93-121. Zbl0932.35129MR1701806DOI10.1006/jdeq.1998.3597
  22. COLLI, P., On some doubly nonlinear evolution equations in Banach spaces. Japan J. Indust. Appl. Math., 9 (1992), 181-203. Zbl0757.34051MR1170721DOI10.1007/BF03167565
  23. COLLI, P. - VISINTIN, A., On a class of doubly nonlinear evolution problems. Communications in P.D.E.s, 15 (1990), 737-756. Zbl0707.34053MR1070845DOI10.1080/03605309908820706
  24. DAL MASO, G., An Introduction to \Gamma-Convergence. Birkhäuser, Boston1993. Zbl0816.49001MR1201152DOI10.1007/978-1-4612-0327-8
  25. DE GIORGI, E. - FRANZONI, T., Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 58 (1975), 842-850. MR448194
  26. DI BENEDETTO, E. - SHOWALTER, R. E., Implicit degenerate evolution equations and applications. S.I.A.M. J. Math. Anal., 12 (1981), 731-751. Zbl0477.47037MR625829DOI10.1137/0512062
  27. EKELAND, I. - TEMAM, R., Analyse Convexe et Problèmes Variationnelles. DunodGauthier-Villars, Paris1974. MR463993
  28. FENCHEL, W., Convex Cones, Sets, and Functions. Princeton Univ., 1953. Zbl0053.12203
  29. FITZPATRICK, S., Representing monotone operators by convex functions. Workshop/Miniconference on Functional Analysis and Optimization (Canberra, 1988), 59-65, Proc. Centre Math. Anal. Austral. Nat. Univ., 20, Austral. Nat. Univ., Canberra, 1988. Zbl0669.47029MR1009594
  30. GAJEWSKI, H., On a variant of monotonicity and its application to differential equations. Nonlinear Anal., 22 (1994), 73-80. Zbl0821.35002MR1256171DOI10.1016/0362-546X(94)90006-X
  31. GAJEWSKI, H. - GRÖGER, K. - ZACHARIAS, K., Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin1974. MR636412
  32. GAJEWSKI, H. - ZACHARIAS, K., Über eine Klasse nichtlinearer Differentialgleichun- gen im Hilbert-Raum. J. Math. Anal. Appl., 44 (1973), 71-87. MR335988DOI10.1016/0022-247X(73)90025-5
  33. GAJEWSKI, H. - ZACHARIAS, K., Über eine weitere Klasse nichtlinearer Differential- gleichungen im Hilbert-Raum. Math. Nachr., 57 (1973), 127-140. Zbl0289.34088MR336476DOI10.1002/mana.19730570107
  34. GHOUSSOUB, N., A variational theory for monotone vector fields. J. Fixed Point Theory Appl., 4 (2008), 107-135. Zbl1177.35093MR2447965DOI10.1007/s11784-008-0083-4
  35. GHOUSSOUB, N., Selfdual Partial Differential Systems and their Variational Principles. Springer, 2009. Zbl1357.49004MR2458698
  36. GHOUSSOUB, N. - TZOU, L., A variational principle for gradient flows. Math. Ann., 330 (2004), 519-549. Zbl1062.35008MR2099192DOI10.1007/s00208-004-0558-6
  37. GRANGE, O. - MIGNOT, F., Sur la résolution d'une équation et une inéquation paraboliques non linéaires. J. Funct. Anal., 11 (1972), 77-92. Zbl0251.35055MR350207
  38. GROÈGER, K. - NEČAS, J., On a class of nonlinear initial value problems in Hilbert spaces. Math. Nachr., 93 (1979), 21-31. MR579840DOI10.1002/mana.19790930103
  39. IGBIDA, N. - URBANO, J. M., Uniqueness for nonlinear degenerate problems. Nonlinear Differential Equations Appl., 10 (2003), 287-307. Zbl1024.35054MR1994812DOI10.1007/s00030-003-1030-0
  40. JIAN, H., On the homogenization of degenerate parabolic equations. Acta Math. Appl. Sinica, 16 (2000), 100-110. Zbl0957.35076MR1757328DOI10.1007/BF02670970
  41. MARTINEZ-LEGAZ, J.-E. - THÉRA, M., A convex representation of maximal monotone operators. J. Nonlinear Convex Anal., 2 (2001), 243-247. Zbl0999.47037MR1848704
  42. MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Monotone operators representable by l.s.c. convex functions. Set-Valued Anal., 13 (2005), 21-46. Zbl1083.47036MR2128696DOI10.1007/s11228-004-4170-4
  43. MARTINEZ-LEGAZ, J.-E. - SVAITER, B. F., Minimal convex functions bounded below by the duality product. Proc. Amer. Math. Soc., 136 (2008), 873-878. Zbl1133.47040MR2361859DOI10.1090/S0002-9939-07-09176-9
  44. MIELKE, A., Evolution of rate-independent systems. In: Handbook of Differential Equations: Evolutionary Differential Equations. Vol. II (C. Dafermos and E. Feireisel, eds.). Elsevier/North-Holland, Amsterdam, (2005), 461-559. Zbl1120.47062MR2182832
  45. MIELKE, A. - THEIL, F., On rate-independent hysteresis models. Nonl. Diff. Eqns. Appl., 11 (2004), 151-189. Zbl1061.35182MR2210284DOI10.1007/s00030-003-1052-7
  46. MIELKE, A. - THEIL, F. - LEVITAS, V., A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Rational Mech. Anal., 162 (2002), 137-177. Zbl1012.74054MR1897379DOI10.1007/s002050200194
  47. MÜLLER, I., A History of Thermodynamics. Springer, Berlin2007. 
  48. MURAT, F., Compacité par compensation. Ann. Scuola Norm. Sup. Pisa, 5 (1978), 489-507. Zbl0399.46022MR506997
  49. NANDAKUMARAN, A. K. - RAJESH, M., Homogenization of a nonlinear degenerate parabolic differential equation. Electron. J. Differential Equations, 1 (2001), 19. Zbl1052.35023MR1824787
  50. NANDAKUMARAN, A. K. - RAJESH, M., Homogenization of a parabolic equation in perforated domain with Neumann boundary condition. Spectral and inverse spectral theory (Goa, 2000). Proc. Indian Acad. Sci. Math. Sci., 112 (2002), 195-207. Zbl1199.35016MR1894553DOI10.1007/BF02829651
  51. NAYROLES, B., Deux théorèmes de minimum pour certains systèmes dissipatifs. C. R. Acad. Sci. Paris Sér. A-B, 282 (1976), A1035-A1038. Zbl0345.73037MR418609
  52. OTTO, F., L^{1}-contraction and uniqueness for unstationary saturated-unsaturated porous media flow. Adv. Math. Sci. Appl., 7 (1997), 537-553. Zbl0888.35085MR1476263
  53. PENOT, J.-P., A representation of maximal monotone operators by closed convex functions and its impact on calculus rules. C. R. Math. Acad. Sci. Paris, Ser. I, 338 (2004), 853-858. Zbl1045.47042MR2059661DOI10.1016/j.crma.2004.03.017
  54. PENOT, J.-P., The relevance of convex analysis for the study of monotonicity. Nonlinear Anal., 58 (2004), 855-871. Zbl1078.47008MR2086060DOI10.1016/j.na.2004.05.018
  55. ROSSI, R. - MIELKE, A. - SAVARÉ, G. , A metric approach to a class of doubly nonlinear evolution equations and applications. Ann. Sc. Norm. Super. Pisa Cl. Sci., 7 (5) (2008), 97-169. Zbl1183.35164MR2413674
  56. ROUBÍČEK, T., Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel2005. Zbl1087.35002
  57. SCHIMPERNA, G. - SEGATTI, A. - STEFANELLI, U., Well-posedness and long-time behavior for a class of doubly nonlinear equations. Discrete Contin. Dyn. Syst., 18 (2007), 15-38. Zbl1195.35185MR2276484DOI10.3934/dcds.2007.18.15
  58. SENBA, T., On some nonlinear evolution equation. Funkcial. Ekvac., 29 (1986), 243-257. Zbl0627.35045MR904541
  59. SIMON, J., Compact sets in the space L^{p}(0;T;B). Ann. Mat. Pura Appl., 146 (1987), 65-96. Zbl0629.46031MR916688DOI10.1007/BF01762360
  60. STEFANELLI, U., The Brezis-Ekeland principle for doubly nonlinear equations. S.I.A.M. J. Control Optim., 8 (2008), 1615-1642. Zbl1194.35214MR2425653DOI10.1137/070684574
  61. TARTAR, L., The General Theory of Homogenization. A Personalized Introduction. SpringerBerlin; UMI, Bologna, 2009. Zbl1188.35004MR2582099DOI10.1007/978-3-642-05195-1
  62. VISINTIN, A., Models of Phase Transitions. Birkhäuser, Boston1996. Zbl0882.35004MR1423808DOI10.1007/978-1-4612-4078-5
  63. VISINTIN, A., Extension of the Brezis-Ekeland-Nayroles principle to monotone operators. Adv. Math. Sci. Appl., 18 (2008), 633-650. Zbl1191.47067MR2489147
  64. VISINTIN, A., Scale-transformations of maximal monotone relations in view of homogenization. Boll. Un. Mat. Ital., III (9) (2010), 591-601. MR2742783
  65. VISINTIN, A., Homogenization of a parabolic model of ferromagnetism. J. Differential Equations, 250 (2011), 1521-1552. Zbl1213.35066MR2737216DOI10.1016/j.jde.2010.09.016
  66. VISINTIN, A., Scale-transformations and homogenization of maximal monotone relations, and applications. (forthcoming). Zbl1302.35042MR3086566
  67. VISINTIN, A., Variational formulation and structural stability of monotone equations. (forthcoming). Zbl1304.47073MR3044140DOI10.1007/s00526-012-0519-y
  68. VISINTIN, A., Structural stability of rate-independent nonpotential flows. (forthcoming). Zbl1262.35141MR2983478DOI10.3934/dcdss.2013.6.257

NotesEmbed ?

top

You must be logged in to post comments.