Stabilized Stokes Elements and Local Mass Conservation

Daniele Boffi; Nicola Cavallini; Francesca Gardini; Lucia Gastaldi

Bollettino dell'Unione Matematica Italiana (2012)

  • Volume: 5, Issue: 3, page 543-573
  • ISSN: 0392-4041

Abstract

top
In this paper we discuss lowest order stabilizations of Stokes finite elements. We study the behavior of the constants in front of the error estimates in terms of the stabilization parameters and confirm with numerical tests that the bounds are sharp. Moreover, we investigate the local mass conservation properties of the considered schemes and analyze new schemes with enhanced pressure approximation, which guarantee a better local discretization of the divergence free constraint.

How to cite

top

Boffi, Daniele, et al. "Stabilized Stokes Elements and Local Mass Conservation." Bollettino dell'Unione Matematica Italiana 5.3 (2012): 543-573. <http://eudml.org/doc/290825>.

@article{Boffi2012,
abstract = {In this paper we discuss lowest order stabilizations of Stokes finite elements. We study the behavior of the constants in front of the error estimates in terms of the stabilization parameters and confirm with numerical tests that the bounds are sharp. Moreover, we investigate the local mass conservation properties of the considered schemes and analyze new schemes with enhanced pressure approximation, which guarantee a better local discretization of the divergence free constraint.},
author = {Boffi, Daniele, Cavallini, Nicola, Gardini, Francesca, Gastaldi, Lucia},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {10},
number = {3},
pages = {543-573},
publisher = {Unione Matematica Italiana},
title = {Stabilized Stokes Elements and Local Mass Conservation},
url = {http://eudml.org/doc/290825},
volume = {5},
year = {2012},
}

TY - JOUR
AU - Boffi, Daniele
AU - Cavallini, Nicola
AU - Gardini, Francesca
AU - Gastaldi, Lucia
TI - Stabilized Stokes Elements and Local Mass Conservation
JO - Bollettino dell'Unione Matematica Italiana
DA - 2012/10//
PB - Unione Matematica Italiana
VL - 5
IS - 3
SP - 543
EP - 573
AB - In this paper we discuss lowest order stabilizations of Stokes finite elements. We study the behavior of the constants in front of the error estimates in terms of the stabilization parameters and confirm with numerical tests that the bounds are sharp. Moreover, we investigate the local mass conservation properties of the considered schemes and analyze new schemes with enhanced pressure approximation, which guarantee a better local discretization of the divergence free constraint.
LA - eng
UR - http://eudml.org/doc/290825
ER -

References

top
  1. BERCOVIER, M. - PIRONNEAU, O., Error estimates for finite element method solution of the Stokes problem in the primitive variables, Numer. Math., 33 (2) (1979), 211-224. Zbl0423.65058MR549450DOI10.1007/BF01399555
  2. BOFFI, D. - BREZZI, F. - FORTIN, M., Finite elements for the Stokes problem. In D. Boffi and L. Gastaldi, editors, Mixed finite elements, compatibility conditions, and applications, volume 1939 of Lecture Notes in Mathematics (Springer-Verlag, Berlin, 2008), 45-100. Zbl1182.76895MR2459075DOI10.1007/978-3-540-78319-0
  3. BOFFI, D. - CAVALLINI, N. - GARDINI, F. - GASTALDI, L., Immersed boundary method: performance analysis of popular finite element spaces. In M. Papadrakakis, E. Onate and B. Schrefler, editors, COUPLED PROBLEMS 2011. Computational Methods for Coupled Problems in Science and Engineering IV (Cimne, 2011). 
  4. BOFFI, D. - CAVALLINI, N. - GARDINI, F. - GASTALDI, L., Local Mass Conservation of Stokes Finite Elements, J. Sci. Comput., to appear. Zbl1264.74259MR2948699DOI10.1007/s10915-011-9549-4
  5. BOFFI, D. - CAVALLINI, N. - GASTALDI, L., Finite element approach to immersed boundary method with different fluid and solid densities., Math. Models Methods Appl. Sci., 21 (12) (2011), 2523-2550. Zbl1242.76190MR2864640DOI10.1142/S0218202511005829
  6. BOFFI, D. - GASTALDI, L. - HELTAI, L. - PESKIN, C. S., On the hyper-elastic formulation of the immersed boundary method, Comput. Methods Appl. Mech. Engrg., 197 (25-28) (2008), 2210-2231. MR2412821DOI10.1016/j.cma.2007.09.015
  7. BREZZI, F. - FORTIN, M., Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics (Springer-Verlag, New York, 1991). Zbl0788.73002MR1115205DOI10.1007/978-1-4612-3172-1
  8. BREZZI, F. - PITKÄRANTA, J., On the stabilization of finite element approximations of the Stokes equations. In Efficient solutions of elliptic systems (Kiel, 1984), volume 10 of Notes Numer. Fluid Mech. (Vieweg, Braunschweig, 1984), 11-19. MR804083
  9. CIARLET, P. G., The finite element method for elliptic problems, North-Holland Publishing Co. (Amsterdam, 1978). Zbl0383.65058MR520174
  10. CLÉMENT, P., Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér., 9 (R-2) (1975), 77-84. Zbl0368.65008MR400739
  11. CREMONESI, M. - FRANGI, A. - PEREGO, U., A Lagrangian finite element approach for the analysis of fluid-structure interaction problems, Internat. J. Numer. Methods Engrg., 84 (5) (2010), 610-630. Zbl1202.74164MR2761810DOI10.1002/nme.2911
  12. FRANCA, L. P. - HUGHES, T. J. R. - STENBERG, R., Stabilized finite element methods. In Incompressible computational fluid dynamics: trends and advances (Cambridge Univ. Press, Cambridge, 2008), 87-107. Zbl1189.76339MR2504357
  13. FRANCA, L. P. - STENBERG, R., Error analysis of Galerkin least squares methods for the elasticity equations, SIAM J. Numer. Anal., 28 (6) (1991), 1680-1697. Zbl0759.73055MR1135761DOI10.1137/0728084
  14. HUGHES, T. J. R. - FRANCA, L. P., A new finite element formulation for computational fluid dynamics. VII. The Stokes problem with various well-posed boundary conditions: symmetric formulations that converge for all velocity/pressure spaces, Comput. Methods Appl. Mech. Engrg., 65 (1) (1987), 85-96. Zbl0635.76067MR914609DOI10.1016/0045-7825(87)90184-8
  15. HUGHES, T. J. R. - FRANCA, L. P. - BALESTRA, M., Errata: ``A new finite element formulation for computational fluid dynamics. V. Circumventing the Babuška-Brezzi condition: a stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations'', Comput. Methods Appl. Mech. Engrg., 62 (1) (1987), 111. Zbl0622.76077MR889303DOI10.1016/0045-7825(87)90092-2
  16. IDELSOHN, S. R. - OÑATE, E., The challenge of mass conservation in the solution of free-surface flows with the fractional-step method: problems and solutions, Int. J. Numer. Methods Biomed. Eng., 26 (10) (2010), 1313-1330. Zbl1274.76191MR2731638DOI10.1002/cnm.1216
  17. KECHKAR, N. - SILVESTER, D. J., The stabilisation of low order mixed finite element methods for incompressible flow. In Proceedings of the Fifth International Symposium on Numerical Methods in Engineering, Vol. 1, 2 (Lausanne, 1989) (Southampton, 1989), 111-116. Comput. Mech. MR1052962
  18. KECHKAR, N. - SILVESTER, D. J., Analysis of locally stabilized mixed finite element methods for the Stokes problem, Math. Comp., 58 (197) (1992), 1-10. Zbl0738.76040MR1106973DOI10.2307/2153016
  19. LE TALLEC, P. - MOURO, J., Fluid structure interaction with large structural displacements, Comput. Methods Appl. Mech. Engrg., 190 (2001), 3039-3067. Zbl1001.74040
  20. MATTHIES, G. - TOBISKA, L., Mass conservation of finite element methods for coupled flow-transport problems, Int. J. Comput. Sci. Math., 1 (2-4) (2007), 293-307. Zbl1185.65214MR2396384DOI10.1504/IJCSM.2007.016537
  21. MICHLER, C. - VAN BRUMMELEN, E. H. - HULSHOFF, S. J. - DE BORST, R., The relevance of conservation for stability and accuracy of numerical methods for fluid-structure interaction, Comput. Methods Appl. Mech. Engrg., 192 (2003), 4195-4215. Zbl1181.74156MR1986021DOI10.1016/S0045-7825(03)00287-1
  22. RYZHAKOV, P. - OÑATE, E. - ROSSI, R. - IDELSOHN, S., Improving mass conservation in simulation of incompressible flows, Int. J. Numer. Meth. Engng. (2012). Zbl1246.76059MR2931179DOI10.1002/nme.3370
  23. SILVESTER, D. J. - KECHKAR, N., Stabilised bilinear-constant velocity-pressure finite elements for the conjugate gradient solution of the Stokes problem, Comput. Methods Appl. Mech. Engrg., 79 (1) (1990), 71-86. Zbl0706.76075MR1044204DOI10.1016/0045-7825(90)90095-4

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.