Linear distributional differential equations of the second order

Milan Tvrdý

Mathematica Bohemica (1994)

  • Volume: 119, Issue: 4, page 415-436
  • ISSN: 0862-7959

Abstract

top
The paper deals with the linear differential equation (0.1) ( p u ' ) ' + q ' u = f ' ' with distributional coefficients and solutions from the space of regulated functions. Our aim is to get the basic existence and uniqueness results for the equation (0.1) and to generalize the known results due to F. V. Atkinson [At], J. Ligeza [Li1]-[Li3], R. Pfaff ([Pf1], [Pf2]), A. B. Mingarelli [Mi] as well as the results from the paper [Pe-Tv] concerning the equation (0.1).

How to cite

top

Tvrdý, Milan. "Linear distributional differential equations of the second order." Mathematica Bohemica 119.4 (1994): 415-436. <http://eudml.org/doc/29274>.

@article{Tvrdý1994,
abstract = {The paper deals with the linear differential equation (0.1) $(pu^\{\prime \})^\{\prime \}+q^\{\prime \}u=f^\{\prime \prime \}$ with distributional coefficients and solutions from the space of regulated functions. Our aim is to get the basic existence and uniqueness results for the equation (0.1) and to generalize the known results due to F. V. Atkinson [At], J. Ligeza [Li1]-[Li3], R. Pfaff ([Pf1], [Pf2]), A. B. Mingarelli [Mi] as well as the results from the paper [Pe-Tv] concerning the equation (0.1).},
author = {Tvrdý, Milan},
journal = {Mathematica Bohemica},
keywords = {regulated functions; Perron-Stieltjes integral; Kurzweil integral; generalized differential equation; linear second order equation; distributional coefficients; existence; boundary value problem; numerical approximation; uniqueness; distribution; regulated functions; Perron-Stieltjes integral; Kurzweil integral; generalized differential equation; linear second order equation; distributional coefficients; existence; uniqueness; boundary value problem; numerical approximation},
language = {eng},
number = {4},
pages = {415-436},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Linear distributional differential equations of the second order},
url = {http://eudml.org/doc/29274},
volume = {119},
year = {1994},
}

TY - JOUR
AU - Tvrdý, Milan
TI - Linear distributional differential equations of the second order
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 4
SP - 415
EP - 436
AB - The paper deals with the linear differential equation (0.1) $(pu^{\prime })^{\prime }+q^{\prime }u=f^{\prime \prime }$ with distributional coefficients and solutions from the space of regulated functions. Our aim is to get the basic existence and uniqueness results for the equation (0.1) and to generalize the known results due to F. V. Atkinson [At], J. Ligeza [Li1]-[Li3], R. Pfaff ([Pf1], [Pf2]), A. B. Mingarelli [Mi] as well as the results from the paper [Pe-Tv] concerning the equation (0.1).
LA - eng
KW - regulated functions; Perron-Stieltjes integral; Kurzweil integral; generalized differential equation; linear second order equation; distributional coefficients; existence; boundary value problem; numerical approximation; uniqueness; distribution; regulated functions; Perron-Stieltjes integral; Kurzweil integral; generalized differential equation; linear second order equation; distributional coefficients; existence; uniqueness; boundary value problem; numerical approximation
UR - http://eudml.org/doc/29274
ER -

References

top
  1. Atkinson F. V., Discrete and Continuous Boundary Value Problems, Academic Press, New York-London, 1964. (1964) MR0176141
  2. Halperin I., Introduction to the Theory of Distributions, University of Toronto Press, Toronto, 1952. (1952) Zbl0046.12603MR0045933
  3. Hollander K., Die numerische Behandlung eines singulären Randwertproblems nach der Differenzenmethode, ZAMM Z. Angew. Math. u. Mech. 65 (1985), T269-T271. (1985) MR0798964
  4. Hönig Gh.S., Volterra-Stieltjes Integral Equations, Mathematics Studies 16, North-Holland, Amsterdam, 1975. (1975) 
  5. Kurzweil J., Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (82) (1957), 418-449. (1957) Zbl0090.30002MR0111875
  6. Ligęza J., On generalized solutions of linear differential equations of order n, Prace Mat., Uniw. Sląski v Katowicach 3 (1973), 101-108. (1973) MR0326038
  7. Ligęza J., On distributional solutions of some systems of linear differential equations, Časopis pěst. mat. 102 (1977), 37-41. (1977) MR0460757
  8. Ligęza J., Weak Solutions of Ordinary Differential Equations, Uniwersytet Sląski, Katowice, 1986. (1986) MR0868863
  9. Ligęza J., Existence and uniqueness of distributional solutions of ordinary differential equations in the class of regulated functions, EQUADIFF 7 - Enlarged Abstracts (7th Czechoslovak Conference on Differential Equations and Their Applications, Praha). 1989, pp. 48-50. (1989) 
  10. Ligęza J., Product of measures and regulated functions, Generalized Functions and Convergence (Memorial Volume for Professor Jan Mikusiński, 13-18 June 1988) (Piotr Antosik and Andrzej Kamiński Katowice, eds.). World Scientific, Praha, Singapore-New Jersey-London-Hong Kong, 1988, pp. 175-179. (1988) MR1085505
  11. Mingarelli A.B., Volterra-Stieltjes Integral Equations and Generalized Ordinary Differential Expressions, Lecture Notes in Mathematics, 989, Springer-Verlag, Berlin-Heidelberg-New York, 1983. (1983) Zbl0516.45012MR0706255
  12. Pandit S.G., Deo S.G., Differential Equations Involving Impulses, Lecture Notes in Mathematics, 954, Springer-Verlag, Berlin-Heidelberg-New York, 1982. (1982) 
  13. Persson J., Linear distribution differential equations, Comment. Math. Univ. St. Pauli 33 (1984), 119-126. (1984) Zbl0552.34004MR0741385
  14. Persson J., 10.7146/math.scand.a-12208, Mathematica Scandinavica 62 (1988), 19-43. (1988) Zbl0642.34004MR0961581DOI10.7146/math.scand.a-12208
  15. Pelant M., Tvrdý M., Linear distributional differential equations in the space of regulated functions, Mathematica Bohemica 118 (1993), to appear. (1993) MR1251883
  16. Pfaff R., Gewöhnliche lineare Differentialgleichungen n-ter Ordnung mit Distributionskoeffizienten, Proc. Roy. Soc. Edinburgh 85A (1980), 291-298. (1980) Zbl0424.34011MR0574022
  17. Pfaff R., Generalized systems of linear differential equations, Proc. Roy. Soc. Edinburgh 89A (1981), 1-14. (1981) Zbl0475.34005MR0628123
  18. Schwabik Š., Generalized Differential Equations (Fundamental Results), Rozpravy ČSAV, řada MPV, 95 (6), Academia, Praha, 1985. (1985) Zbl0594.34002MR0823224
  19. Schwabik Š., Generalized Differential Equations (Special Results), Rozpravy ČSAV, řada MPV, 99 (3), Academia, Praha, 1989. (1989) Zbl0821.34002MR1002180
  20. Schwabik Š., Generalized Ordinary Differential Equations, World Scientific, Singapore, 1992. (1992) Zbl0781.34003MR1200241
  21. Schwabik Š., Tvrdý M., Vejvoda O., Differential and Integral Equations: Boundary Value Problems and Adjoints, Academia and D. Reidel, Praha and Dordrecht, 1979. (1979) MR0542283
  22. Tvrdý M., Regulated functions and the Perron-Stieltjes integral, Časopis pěst. mat. 114 (1989), 187-209. (1989) MR1063765
  23. Tvrdý M., Generalized differential equations in the space of regulated functions (Boundary value problems and controllability), Mathematica Bohemica 116 (1991), 225-244. (1991) Zbl0744.34021MR1126445
  24. Zavalishchin S.G., Sesekin A.N., Impulse Processes, Models and Applications, Nauka, Moscow, 1991. (In Russian.) (1991) MR1126685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.