Bifurcation of periodic solutions to nonlinear measure differential equations

Maria Carolina Mesquita; Milan Tvrdý

Czechoslovak Mathematical Journal (2025)

  • Issue: 1, page 357-395
  • ISSN: 0011-4642

Abstract

top
The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil’s generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil’s equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well.

How to cite

top

Mesquita, Maria Carolina, and Tvrdý, Milan. "Bifurcation of periodic solutions to nonlinear measure differential equations." Czechoslovak Mathematical Journal (2025): 357-395. <http://eudml.org/doc/299902>.

@article{Mesquita2025,
abstract = {The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil’s generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil’s equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well.},
author = {Mesquita, Maria Carolina, Tvrdý, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {periodic solution; bifurcation; Kurzweil integral; Kurzweil-Stieltjes integral; generalized differential equation; measure differential equation; distributional differential equation},
language = {eng},
number = {1},
pages = {357-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation of periodic solutions to nonlinear measure differential equations},
url = {http://eudml.org/doc/299902},
year = {2025},
}

TY - JOUR
AU - Mesquita, Maria Carolina
AU - Tvrdý, Milan
TI - Bifurcation of periodic solutions to nonlinear measure differential equations
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 357
EP - 395
AB - The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil’s generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil’s equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well.
LA - eng
KW - periodic solution; bifurcation; Kurzweil integral; Kurzweil-Stieltjes integral; generalized differential equation; measure differential equation; distributional differential equation
UR - http://eudml.org/doc/299902
ER -

References

top
  1. Amann, H., 10.1515/9783110853698, De Gruyter Studies in Mathematics 13. Walter de Gruyter, Berlin (1990). (1990) Zbl0708.34002MR0708.34002DOI10.1515/9783110853698
  2. Anagnostopoulou, V., Pötzsche, C., Rasmussen, M., 10.1007/978-3-031-29842-4, Frontiers in Applied Dynamical Systems: Reviews and Tutorials 10. Springer, Cham (2023). (2023) Zbl1530.37003MR4633309DOI10.1007/978-3-031-29842-4
  3. Bainov, D., Simeonov, P., 10.1201/9780203751206, Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, Harlow (1993). (1993) Zbl0815.34001MR1266625DOI10.1201/9780203751206
  4. Bonotto, E. M., Federson, M., Mesquita, J. G., (Eds.), 10.1002/9781119655022, John Wiley & Sons, Hoboken (2021). (2021) Zbl1475.34001MR4485099DOI10.1002/9781119655022
  5. Brogliato, B., 10.1007/978-3-319-28664-8, Communications and Control Engineering Series. Springer, London (1999). (1999) Zbl0917.73002MR3467591DOI10.1007/978-3-319-28664-8
  6. Cao, Y., Sun, J., 10.1016/j.nahs.2015.11.003, Nonlinear Anal., Hybrid Syst. 20 (2016), 72-81. (2016) Zbl1341.34061MR3457662DOI10.1016/j.nahs.2015.11.003
  7. Cao, Y., Sun, J., 10.1016/j.nahs.2018.05.010, Nonlinear Anal., Hybrid Syst. 30 (2018), 163-170. (2018) Zbl1506.34006MR3841601DOI10.1016/j.nahs.2018.05.010
  8. Cid, J. A., Infante, G., Tvrdý, M., Zima, M., 10.1016/j.nonrwa.2016.11.009, Nonlinear Anal., Real World Appl. 35 (2017), 457-469. (2017) Zbl1370.34043MR3595336DOI10.1016/j.nonrwa.2016.11.009
  9. Cid, J.Á., Sanchez, L., 10.3934/dcdsb.2019253, Discrete Contin. Dyn. Syst., Ser. B 25 (2020), 545-554. (2020) Zbl1433.34060MR4043578DOI10.3934/dcdsb.2019253
  10. Cousin, P., 10.1007/BF02402869, Acta Math. 19 (1895), 1-62 French 9999JFM99999 26.0456.02. (1895) MR1554861DOI10.1007/BF02402869
  11. Drábek, P., Milota, J., 10.1007/978-3-0348-0387-8, Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel (2007). (2007) Zbl1176.35002MR2323436DOI10.1007/978-3-0348-0387-8
  12. Federson, M., Mawhin, J., Mesquita, C., 10.1016/j.bulsci.2021.102991, Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. (2021) Zbl1471.34011MR4253257DOI10.1016/j.bulsci.2021.102991
  13. Fraňková, D., 10.21136/MB.1991.126195, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424DOI10.21136/MB.1991.126195
  14. Friedlander, F. G., Joshi, M., Introduction to the Theory of Distributions, Cambridge University Press, Cambridge (1998). (1998) Zbl0971.46024MR1721032
  15. Hakl, R., Torres, P. J., 10.1016/j.amc.2011.02.053, Appl. Math. Comput. 217 (2011), 7599-7611. (2011) Zbl1235.34064MR2799774DOI10.1016/j.amc.2011.02.053
  16. Halperin, I., 10.3138/9781442615151, University of Toronto Press, Toronto (1952). (1952) Zbl0046.12603MR0045933DOI10.3138/9781442615151
  17. Hildebrandt, T. H., Introduction to the Theory of Integration, Pure and Applied Mathematics 13. Academic Press, New York (1963). (1963) Zbl0112.28302MR0154957
  18. Hönig, C. S., Volterra-Stieltjes Integral Equations. Functional Analytic Methods, Linear Constraints, North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). (1975) Zbl0307.45002MR0499969
  19. Kanwal, R. P., 10.1007/978-0-8176-8174-6, Birkhäuser, Boston (2004). (2004) Zbl1069.46001MR2075881DOI10.1007/978-0-8176-8174-6
  20. Kelley, W. G., Peterson, A. C., 10.1007/978-1-4419-5783-2, Universitext. Springer, New York (2010). (2010) Zbl1201.34001MR2640364DOI10.1007/978-1-4419-5783-2
  21. Krasnosel'skiĭ, M. A., ko, P. P. Zabreĭ, 10.1007/978-3-642-69409-7, Grundlehren der Mathematischen Wissenschaften 263. Springer, Berlin (1984). (1984) Zbl0546.47030MR0736839DOI10.1007/978-3-642-69409-7
  22. Krawcewicz, W., Wu, J., Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1997). (1997) Zbl0882.58001MR1426128
  23. Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
  24. Kurzweil, J., 10.21136/CMJ.1958.100311, Czech. Math. J. 8 (1958), 360-388. (1958) Zbl0094.05804MR0111878DOI10.21136/CMJ.1958.100311
  25. Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
  26. Ligęza, J., Product of measures and regulated functions, Generalized Functions and Convergence World Scientific, Singapore (1990), 175-179. (1990) MR1085505
  27. Lomtatidze, A., Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. (2016) Zbl1352.34033MR3472904
  28. Albés, I. Márquez, Slavík, A., Tvrdý, M., 10.1016/j.jmaa.2022.126789, J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. (2023) Zbl1507.34004MR4499373DOI10.1016/j.jmaa.2022.126789
  29. McShane, E. J., Integration, Princeton University Press, Princeton (1947). (1947) Zbl0033.05302MR0082536
  30. Macena, M. C. S. Mesquita, Applications of Topological Degree Theory to Generalized ODEs: Ph. D. Thesis, Universidade Federal de Sao Carlos, Sao Carlos (2019), Available at https://repositorio.ufscar.br/handle/ufscar/12204. (2019) 
  31. Miller, B. M., Rubinovich, E. Y., 10.1007/978-1-4615-0095-7, Kluwer Academic, New York (2003). (2003) Zbl1065.49022MR2024011DOI10.1007/978-1-4615-0095-7
  32. Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
  33. Monteiro, G. A., Tvrdý, M., 10.21136/MB.2012.142992, Math. Bohem. 137 (2012), 365-381. (2012) Zbl1274.26014MR3058269DOI10.21136/MB.2012.142992
  34. Pandit, S. G., Deo, S. G., 10.1007/BFb0067476, Lecture Notes in Mathematics 954. Springer, Berlin (1982). (1982) Zbl0539.34001MR0674119DOI10.1007/BFb0067476
  35. Propst, G., 10.1016/j.physd.2006.04.007, Physica D 217 (2006), 193-201. (2006) Zbl1136.76338MR2230516DOI10.1016/j.physd.2006.04.007
  36. Rachůnková, I., Tomeček, J., 10.1007/s10986-018-9394-3, Lith. Math. J. 58 (2018), 185-197. (2018) Zbl1401.34024MR3814714DOI10.1007/s10986-018-9394-3
  37. Rasmussen, M., 10.1007/978-3-540-71225-1, Lecture Notes in Mathematics 1907. Springer, Berlin (2007). (2007) Zbl1131.37001MR2327977DOI10.1007/978-3-540-71225-1
  38. Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). (1991) Zbl0867.46001MR1157815
  39. Samoilenko, A. M., Perestyuk, N. A., 10.1142/2892, World Scientific Series on Nonlinear Science. Series A 14. World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787DOI10.1142/2892
  40. Satco, B., 10.1016/j.nahs.2014.02.001, Nonlinear Anal., Hybrid Syst. 13 (2014), 22-31. (2014) Zbl1295.45003MR3209695DOI10.1016/j.nahs.2014.02.001
  41. Schechter, M., 10.1090/gsm/036, Graduate Studies in Mathematics 36. AMS, Providence (2002). (2002) Zbl1002.46002MR1861991DOI10.1090/gsm/036
  42. Schwabik, Š., Generalized differential equations. Fundamental results, Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd 95 (1985), 103 pages. (1985) Zbl0594.34002MR0823224
  43. Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
  44. Slavík, A., 10.1016/j.jmaa.2013.01.027, J. Math. Anal. Appl. 402 (2013), 261-274. (2013) Zbl1279.34013MR3023256DOI10.1016/j.jmaa.2013.01.027
  45. Torres, P. J., 10.2991/978-94-6239-106-2, Atlantis Briefs in Differential Equations 1. Atlantis Press, Amsterdam (2015). (2015) Zbl1305.00097MR3328358DOI10.2991/978-94-6239-106-2
  46. Tvrdý, M., 10.21136/MB.1994.126120, Math. Bohem. 119 (1994), 415-436. (1994) Zbl0819.34007MR1316594DOI10.21136/MB.1994.126120
  47. Tvrdý, M., Differential and integral equations in the space of regulated functions, Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. (2002) Zbl1081.34504MR1903190
  48. Yeh, J., 10.1142/9037, World Scientific, Hackensack (2014). (2014) Zbl1301.26002MR3308472DOI10.1142/9037

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.