Bifurcation of periodic solutions to nonlinear measure differential equations
Maria Carolina Mesquita; Milan Tvrdý
Czechoslovak Mathematical Journal (2025)
- Issue: 1, page 357-395
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topMesquita, Maria Carolina, and Tvrdý, Milan. "Bifurcation of periodic solutions to nonlinear measure differential equations." Czechoslovak Mathematical Journal (2025): 357-395. <http://eudml.org/doc/299902>.
@article{Mesquita2025,
abstract = {The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil’s generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil’s equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well.},
author = {Mesquita, Maria Carolina, Tvrdý, Milan},
journal = {Czechoslovak Mathematical Journal},
keywords = {periodic solution; bifurcation; Kurzweil integral; Kurzweil-Stieltjes integral; generalized differential equation; measure differential equation; distributional differential equation},
language = {eng},
number = {1},
pages = {357-395},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Bifurcation of periodic solutions to nonlinear measure differential equations},
url = {http://eudml.org/doc/299902},
year = {2025},
}
TY - JOUR
AU - Mesquita, Maria Carolina
AU - Tvrdý, Milan
TI - Bifurcation of periodic solutions to nonlinear measure differential equations
JO - Czechoslovak Mathematical Journal
PY - 2025
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
IS - 1
SP - 357
EP - 395
AB - The paper is devoted to the periodic bifurcation problems for generalizations of ordinary differential systems. The bifurcation is understood in the static sense of Krasnoselski and Zabreko. First, the conditions necessary for the given point to be bifurcation point for non autonomous generalized ordinary differential equations (based on the Kurzweil gauge type generalized integral) are proved. Then, as the main contribution, analogous results are obtained also for the nonlinear non autonomous measure differential equations considered in the sense of distributions. To this aim their relationship to Kurzweil’s generalized differential equations is disclosed. Although the measure differential equations turned out to be special cases of those Kurzweil’s equations, the proofs of the main results of the paper are by no means the straightforward consequences of the analogous results for generalized differential equations. Essentially they rely on the theory of the Kurzweil-Stieltjes integration. It is worth noting that as the systems studied in the paper encompass many types of equations such as impulsive differential equations, ordinary differential equations, dynamic equations on time scales etc., the results of the paper offer applications to rather wide scale of practical problems. Two illustrating examples are included, as well.
LA - eng
KW - periodic solution; bifurcation; Kurzweil integral; Kurzweil-Stieltjes integral; generalized differential equation; measure differential equation; distributional differential equation
UR - http://eudml.org/doc/299902
ER -
References
top- Amann, H., 10.1515/9783110853698, De Gruyter Studies in Mathematics 13. Walter de Gruyter, Berlin (1990). (1990) Zbl0708.34002MR0708.34002DOI10.1515/9783110853698
- Anagnostopoulou, V., Pötzsche, C., Rasmussen, M., 10.1007/978-3-031-29842-4, Frontiers in Applied Dynamical Systems: Reviews and Tutorials 10. Springer, Cham (2023). (2023) Zbl1530.37003MR4633309DOI10.1007/978-3-031-29842-4
- Bainov, D., Simeonov, P., 10.1201/9780203751206, Pitman Monographs and Surveys in Pure and Applied Mathematics 66. Longman Scientific & Technical, Harlow (1993). (1993) Zbl0815.34001MR1266625DOI10.1201/9780203751206
- Bonotto, E. M., Federson, M., Mesquita, J. G., (Eds.), 10.1002/9781119655022, John Wiley & Sons, Hoboken (2021). (2021) Zbl1475.34001MR4485099DOI10.1002/9781119655022
- Brogliato, B., 10.1007/978-3-319-28664-8, Communications and Control Engineering Series. Springer, London (1999). (1999) Zbl0917.73002MR3467591DOI10.1007/978-3-319-28664-8
- Cao, Y., Sun, J., 10.1016/j.nahs.2015.11.003, Nonlinear Anal., Hybrid Syst. 20 (2016), 72-81. (2016) Zbl1341.34061MR3457662DOI10.1016/j.nahs.2015.11.003
- Cao, Y., Sun, J., 10.1016/j.nahs.2018.05.010, Nonlinear Anal., Hybrid Syst. 30 (2018), 163-170. (2018) Zbl1506.34006MR3841601DOI10.1016/j.nahs.2018.05.010
- Cid, J. A., Infante, G., Tvrdý, M., Zima, M., 10.1016/j.nonrwa.2016.11.009, Nonlinear Anal., Real World Appl. 35 (2017), 457-469. (2017) Zbl1370.34043MR3595336DOI10.1016/j.nonrwa.2016.11.009
- Cid, J.Á., Sanchez, L., 10.3934/dcdsb.2019253, Discrete Contin. Dyn. Syst., Ser. B 25 (2020), 545-554. (2020) Zbl1433.34060MR4043578DOI10.3934/dcdsb.2019253
- Cousin, P., 10.1007/BF02402869, Acta Math. 19 (1895), 1-62 French 9999JFM99999 26.0456.02. (1895) MR1554861DOI10.1007/BF02402869
- Drábek, P., Milota, J., 10.1007/978-3-0348-0387-8, Birkhäuser Advanced Texts. Basler Lehrbücher. Birkhäuser, Basel (2007). (2007) Zbl1176.35002MR2323436DOI10.1007/978-3-0348-0387-8
- Federson, M., Mawhin, J., Mesquita, C., 10.1016/j.bulsci.2021.102991, Bull. Sci. Math. 169 (2021), Article ID 102991, 31 pages. (2021) Zbl1471.34011MR4253257DOI10.1016/j.bulsci.2021.102991
- Fraňková, D., 10.21136/MB.1991.126195, Math. Bohem. 116 (1991), 20-59. (1991) Zbl0724.26009MR1100424DOI10.21136/MB.1991.126195
- Friedlander, F. G., Joshi, M., Introduction to the Theory of Distributions, Cambridge University Press, Cambridge (1998). (1998) Zbl0971.46024MR1721032
- Hakl, R., Torres, P. J., 10.1016/j.amc.2011.02.053, Appl. Math. Comput. 217 (2011), 7599-7611. (2011) Zbl1235.34064MR2799774DOI10.1016/j.amc.2011.02.053
- Halperin, I., 10.3138/9781442615151, University of Toronto Press, Toronto (1952). (1952) Zbl0046.12603MR0045933DOI10.3138/9781442615151
- Hildebrandt, T. H., Introduction to the Theory of Integration, Pure and Applied Mathematics 13. Academic Press, New York (1963). (1963) Zbl0112.28302MR0154957
- Hönig, C. S., Volterra-Stieltjes Integral Equations. Functional Analytic Methods, Linear Constraints, North-Holland Mathematics Studies 16. North Holland, Amsterdam (1975). (1975) Zbl0307.45002MR0499969
- Kanwal, R. P., 10.1007/978-0-8176-8174-6, Birkhäuser, Boston (2004). (2004) Zbl1069.46001MR2075881DOI10.1007/978-0-8176-8174-6
- Kelley, W. G., Peterson, A. C., 10.1007/978-1-4419-5783-2, Universitext. Springer, New York (2010). (2010) Zbl1201.34001MR2640364DOI10.1007/978-1-4419-5783-2
- Krasnosel'skiĭ, M. A., ko, P. P. Zabreĭ, 10.1007/978-3-642-69409-7, Grundlehren der Mathematischen Wissenschaften 263. Springer, Berlin (1984). (1984) Zbl0546.47030MR0736839DOI10.1007/978-3-642-69409-7
- Krawcewicz, W., Wu, J., Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. John Wiley & Sons, New York (1997). (1997) Zbl0882.58001MR1426128
- Kurzweil, J., 10.21136/CMJ.1957.100258, Czech. Math. J. 7 (1957), 418-449. (1957) Zbl0090.30002MR0111875DOI10.21136/CMJ.1957.100258
- Kurzweil, J., 10.21136/CMJ.1958.100311, Czech. Math. J. 8 (1958), 360-388. (1958) Zbl0094.05804MR0111878DOI10.21136/CMJ.1958.100311
- Kurzweil, J., 10.1142/7907, Series in Real Analysis 11. World Scientific, Hackensack (2012). (2012) Zbl1248.34001MR2906899DOI10.1142/7907
- Ligęza, J., Product of measures and regulated functions, Generalized Functions and Convergence World Scientific, Singapore (1990), 175-179. (1990) MR1085505
- Lomtatidze, A., Theorems on differential inequalities and periodic boundary value problem for second-order ordinary differential equations, Mem. Differ. Equ. Math. Phys. 67 (2016), 1-129. (2016) Zbl1352.34033MR3472904
- Albés, I. Márquez, Slavík, A., Tvrdý, M., 10.1016/j.jmaa.2022.126789, J. Math. Anal. Appl. 519 (2023), Article ID 126789, 52 pages. (2023) Zbl1507.34004MR4499373DOI10.1016/j.jmaa.2022.126789
- McShane, E. J., Integration, Princeton University Press, Princeton (1947). (1947) Zbl0033.05302MR0082536
- Macena, M. C. S. Mesquita, Applications of Topological Degree Theory to Generalized ODEs: Ph. D. Thesis, Universidade Federal de Sao Carlos, Sao Carlos (2019), Available at https://repositorio.ufscar.br/handle/ufscar/12204. (2019)
- Miller, B. M., Rubinovich, E. Y., 10.1007/978-1-4615-0095-7, Kluwer Academic, New York (2003). (2003) Zbl1065.49022MR2024011DOI10.1007/978-1-4615-0095-7
- Monteiro, G. A., Slavík, A., Tvrdý, M., 10.1142/9432, Series in Real Analysis 15. World Scientific, Hackensack (2019). (2019) Zbl1437.28001MR3839599DOI10.1142/9432
- Monteiro, G. A., Tvrdý, M., 10.21136/MB.2012.142992, Math. Bohem. 137 (2012), 365-381. (2012) Zbl1274.26014MR3058269DOI10.21136/MB.2012.142992
- Pandit, S. G., Deo, S. G., 10.1007/BFb0067476, Lecture Notes in Mathematics 954. Springer, Berlin (1982). (1982) Zbl0539.34001MR0674119DOI10.1007/BFb0067476
- Propst, G., 10.1016/j.physd.2006.04.007, Physica D 217 (2006), 193-201. (2006) Zbl1136.76338MR2230516DOI10.1016/j.physd.2006.04.007
- Rachůnková, I., Tomeček, J., 10.1007/s10986-018-9394-3, Lith. Math. J. 58 (2018), 185-197. (2018) Zbl1401.34024MR3814714DOI10.1007/s10986-018-9394-3
- Rasmussen, M., 10.1007/978-3-540-71225-1, Lecture Notes in Mathematics 1907. Springer, Berlin (2007). (2007) Zbl1131.37001MR2327977DOI10.1007/978-3-540-71225-1
- Rudin, W., Functional Analysis, International Series in Pure and Applied Mathematics. McGraw-Hill, New York (1991). (1991) Zbl0867.46001MR1157815
- Samoilenko, A. M., Perestyuk, N. A., 10.1142/2892, World Scientific Series on Nonlinear Science. Series A 14. World Scientific, Singapore (1995). (1995) Zbl0837.34003MR1355787DOI10.1142/2892
- Satco, B., 10.1016/j.nahs.2014.02.001, Nonlinear Anal., Hybrid Syst. 13 (2014), 22-31. (2014) Zbl1295.45003MR3209695DOI10.1016/j.nahs.2014.02.001
- Schechter, M., 10.1090/gsm/036, Graduate Studies in Mathematics 36. AMS, Providence (2002). (2002) Zbl1002.46002MR1861991DOI10.1090/gsm/036
- Schwabik, Š., Generalized differential equations. Fundamental results, Rozpr. Česk. Akad. Věd, Řada Mat. Přír. Věd 95 (1985), 103 pages. (1985) Zbl0594.34002MR0823224
- Schwabik, Š., 10.1142/1875, Series in Real Analysis 5. World Scientific, Singapore (1992). (1992) Zbl0781.34003MR1200241DOI10.1142/1875
- Slavík, A., 10.1016/j.jmaa.2013.01.027, J. Math. Anal. Appl. 402 (2013), 261-274. (2013) Zbl1279.34013MR3023256DOI10.1016/j.jmaa.2013.01.027
- Torres, P. J., 10.2991/978-94-6239-106-2, Atlantis Briefs in Differential Equations 1. Atlantis Press, Amsterdam (2015). (2015) Zbl1305.00097MR3328358DOI10.2991/978-94-6239-106-2
- Tvrdý, M., 10.21136/MB.1994.126120, Math. Bohem. 119 (1994), 415-436. (1994) Zbl0819.34007MR1316594DOI10.21136/MB.1994.126120
- Tvrdý, M., Differential and integral equations in the space of regulated functions, Mem. Differ. Equ. Math. Phys. 25 (2002), 1-104. (2002) Zbl1081.34504MR1903190
- Yeh, J., 10.1142/9037, World Scientific, Hackensack (2014). (2014) Zbl1301.26002MR3308472DOI10.1142/9037
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.