A note to a bifurcation result of H. Kielhöfer for the wave equation

Otto Vejvoda; Pavel Krejčí

Mathematica Bohemica (1991)

  • Volume: 116, Issue: 3, page 245-247
  • ISSN: 0862-7959

Abstract

top
A modification of a classical number-theorem on Diophantine approximations is used for generalizing H. kielhöfer's result on bifurcations of nontrivial periodic solutions to nonlinear wave equations.

How to cite

top

Vejvoda, Otto, and Krejčí, Pavel. "A note to a bifurcation result of H. Kielhöfer for the wave equation." Mathematica Bohemica 116.3 (1991): 245-247. <http://eudml.org/doc/29333>.

@article{Vejvoda1991,
abstract = {A modification of a classical number-theorem on Diophantine approximations is used for generalizing H. kielhöfer's result on bifurcations of nontrivial periodic solutions to nonlinear wave equations.},
author = {Vejvoda, Otto, Krejčí, Pavel},
journal = {Mathematica Bohemica},
keywords = {Diophantine approximations; wave equation; periodic solution; bifurcation; Diophantine approximations},
language = {eng},
number = {3},
pages = {245-247},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note to a bifurcation result of H. Kielhöfer for the wave equation},
url = {http://eudml.org/doc/29333},
volume = {116},
year = {1991},
}

TY - JOUR
AU - Vejvoda, Otto
AU - Krejčí, Pavel
TI - A note to a bifurcation result of H. Kielhöfer for the wave equation
JO - Mathematica Bohemica
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 116
IS - 3
SP - 245
EP - 247
AB - A modification of a classical number-theorem on Diophantine approximations is used for generalizing H. kielhöfer's result on bifurcations of nontrivial periodic solutions to nonlinear wave equations.
LA - eng
KW - Diophantine approximations; wave equation; periodic solution; bifurcation; Diophantine approximations
UR - http://eudml.org/doc/29333
ER -

References

top
  1. H. Kielhöfer, 10.1016/0022-247X(79)90125-2, J. Math. Anal. Appl. 68 (1979), 408-420. (1979) DOI10.1016/0022-247X(79)90125-2
  2. H. Kielhöfer P. Kötzner, 10.1007/BF00945406, j. Appl. Math. Phys. (ZAMP) 38 (1987), 204-212. (1987) DOI10.1007/BF00945406
  3. J. W. S. Cassels, An introduction to Diophantine approximation, Cambridge University Press no. 45, Cambridge, 1957. (1957) Zbl0077.04801MR0087708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.