Modular curves and Fermat's theorem

Jan Nekovář

Mathematica Bohemica (1994)

  • Volume: 119, Issue: 1, page 79-96
  • ISSN: 0862-7959

How to cite

top

Nekovář, Jan. "Modulární křivky a Fermatova věta." Mathematica Bohemica 119.1 (1994): 79-96. <http://eudml.org/doc/29353>.

@article{Nekovář1994,
author = {Nekovář, Jan},
journal = {Mathematica Bohemica},
keywords = {modular curves; survey; Taniyama conjecture; Fermat’s last theorem; modular curves; survey; Taniyama conjecture; Fermat's last theorem},
language = {cze},
number = {1},
pages = {79-96},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Modulární křivky a Fermatova věta},
url = {http://eudml.org/doc/29353},
volume = {119},
year = {1994},
}

TY - JOUR
AU - Nekovář, Jan
TI - Modulární křivky a Fermatova věta
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 1
SP - 79
EP - 96
LA - cze
KW - modular curves; survey; Taniyama conjecture; Fermat’s last theorem; modular curves; survey; Taniyama conjecture; Fermat's last theorem
UR - http://eudml.org/doc/29353
ER -

References

top
  1. S. Bloch K. Kato, L-functions and Tamagawa numbers of motives, In: The Grothendieck Festschrift I, Progress in Mathematics 86. Birkhäuser, Boston, Basel, Berlin, 1990, pp. 333-400. (1990) MR1086888
  2. H. C. Clemens, A scrapbook of complex curve theory, Plenum Press, New York, London, 1980. (1980) Zbl0456.14016MR0614289
  3. J. Coates A. Wiles, 10.1007/BF01402975, Invent. Math. 39 (1977), 223-251. (1977) MR0463176DOI10.1007/BF01402975
  4. M. Eichler, 10.1007/BF01898377, Arch. Math. 5 (1954), 355-366. (1954) MR0063406DOI10.1007/BF01898377
  5. G. Faltings, 10.1007/BF01388432, Invent. Math. 73 (1983), 349-366. (1983) Zbl0588.14026MR0718935DOI10.1007/BF01388432
  6. M. Flach, 10.1007/BF01232029, Invent. Math. 109 (1992), 307-327. (1992) Zbl0781.14022MR1172693DOI10.1007/BF01232029
  7. G. Frey, Links between stable elliptic curves and certain diophantine equations, Ann. Univ. Sarav. 1 (1986), 1-40. (1986) Zbl0586.10010MR0853387
  8. G. Frey, 10.1007/BFb0086544, Lecture Notes in Math. 1380. 1989, pp. 31-62. (1989) Zbl0688.14018MR1009792DOI10.1007/BFb0086544
  9. P. Griffiths J. Harris, Principles of Algebraic Geometry, Wiley, New York, 1978. (1978) MR0507725
  10. H. Hasse, Beweis des Analogons der Riemannschen Vermutung für die Artinschen und F.K. Schmidtschen Kongruenzzetafunktionen in gewissen elliptischen Fallen, Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (1933), 253-262. (1933) 
  11. K. Ireland M. Rosen, A Classical Introduction to Modern Number Theory, Graduate Texts in Mathematics 84, Springer, New York, Heidelberg, Berlin, 1982. (1982) MR0661047
  12. V. A. Kolyvagin, Koněčnosť E(Q) i Ш(E, Q) dlja podklassa krivych Vejlja, Izv. Akad. Nauk SSSR, Ser. Mat. 52 (1988), 522-540. (1988) 
  13. V. A. Kolyvagin, O gruppach Mordella-Vejlja i Šafareviča-Tejta dlja elliptičeskich krivych Vejlja, zv. Akad. Nauk SSSR, Ser. Mat. 52(1988), 1156-1180. (1988) 
  14. V. A. Kolyvagin, Euler Systems, In: The Grothendieck Festschrift II, Progress in Mathematics 87. Birkhäuser, Boston, Basel, Berlin, 1990, pp. 435-483. (1990) Zbl0742.14017MR1106906
  15. S. Lang, Elliptic Functions, Addison-Wesley, Reading, Mass., 1973. (1973) Zbl0316.14001MR0409362
  16. S. Lang, Introduction to Modular Forms, Springer, Berlin, Heidelberg, New York, 1976. (1976) Zbl0344.10011MR0429740
  17. B. Mazur, 10.1007/BF02684339, Publ. Math. IHES 47 (1977), 33-186. (1977) Zbl0394.14008MR0488287DOI10.1007/BF02684339
  18. B. Mazur, 10.1007/978-1-4613-9649-9_7, Math. Sci. Res. Inst. Publ., vol. 16. Springer-Verlag Berlin and New York, 1989, pp. 385-437. (1989) MR1012172DOI10.1007/978-1-4613-9649-9_7
  19. B. Mazur, [unknown], Letter to J.-F. Mestre (16 August 1985). (1985) Zbl0588.76163
  20. B. Mazur, 10.1080/00029890.1991.11995762, Amer. Math. Monthly 98 (1991), 593-610. (1991) Zbl0764.11021MR1121312DOI10.1080/00029890.1991.11995762
  21. B. Mazur, 10.1090/S0273-0979-1993-00414-2, Bulletin AMS 29 (1993), no. 1, 14-50. (1993) Zbl0813.14016MR1202293DOI10.1090/S0273-0979-1993-00414-2
  22. B. Mazur K. Ribet, Two-dimensional representations in the arithmetic of modular curves, In: Asterisque 196/197, S.M.F.. 1991, pp. 215-255. (197,) MR1141460
  23. B. Mazur A. Wiles, Class fields of abelian extensions of Q, Invent. Math. 76(1984), 179-330. (1984) MR0742853
  24. J. Nekovář, Values of L-functions and p-adic cohomology, In: Proceedings ECM 1992 Paris, to appear. (1992) MR1341847
  25. A. Ogg, Modular forms and Dirichlet series, Benjamin, 1969. (1969) Zbl0191.38101MR0256993
  26. K. A. Ribet, 10.1007/BF01231195, Invent. Math. 100 (1990), 431-476. (1990) MR1047143DOI10.1007/BF01231195
  27. K. A. Ribet, 10.5802/afst.698, Ann. Fac. Sci. Toulouse Math. 11 (1990), 116-139. (1990) Zbl0726.14015MR1191476DOI10.5802/afst.698
  28. K. A. Ribet, Report on mod l representations of G a l ( Q ¯ / Q ) , In: Proceedings of the "Motives" conference, Seattle 1991. to appear in Proc. Symp. Pure Math. (1991) MR1265566
  29. K. Rubin, 10.1007/BF01239508, Invent. Math. 103 (1991), 25-68. (1991) MR1079839DOI10.1007/BF01239508
  30. J.-P. Serre, A Course in Arithmetic, Springer, New York, 1973. (1973) Zbl0256.12001MR0344216
  31. J.-P. Serre, [unknown], Lettre à J.-F. Mestre, (13 Août 1985). Contemp. Math. 67(1987), 263-268. (1985) Zbl0596.12004MR0902597
  32. J.-P. Serre, 10.1215/S0012-7094-87-05413-5, Duke Math. J. 54 (1987), 179-230. (1987) MR0885783DOI10.1215/S0012-7094-87-05413-5
  33. G. Shimura, 10.2969/jmsj/01010001, J. Math. Soc. Japan 10 (1958), 1-28. (1958) MR0095173DOI10.2969/jmsj/01010001
  34. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Princeton University Press, 1971. (1971) Zbl0221.10029MR0314766
  35. J. H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math., vol. 106, Springer, New York, 1986, (1986) Zbl0585.14026MR0817210
  36. J. Tunnell, 10.1090/S0273-0979-1981-14936-3, Bull. Amer. Math. Soc. (N.S.) 5 (1981), 173-175. (1981) Zbl0475.12016MR0621884DOI10.1090/S0273-0979-1981-14936-3
  37. H. Weber, Lehrbuch der Algebra, III, 1908. 
  38. A. Weil, Elliptic functions according to Eisenstein and Kronecker, Springer, New York, 1976. (1976) Zbl0318.33004MR0562289
  39. A. Wiles, 10.2307/1971143, Ann. of Math. 107(1978), 235-254. (1978) Zbl0378.12006MR0480442DOI10.2307/1971143
  40. A. Wiles, 10.1007/BF01394275, Invent. Math. 94 (1988), 529-573. (1988) Zbl0664.10013MR0969243DOI10.1007/BF01394275
  41. A. Wiles, 10.2307/1971468, Ann. of Math. 131 (1990), 493-540. (1990) Zbl0719.11071MR1053488DOI10.2307/1971468
  42. A. Wiles, 10.2307/1971470, Ann. of Math. 131 (1990), 555-565. (1990) Zbl0719.11082MR1053490DOI10.2307/1971470

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.