From the Taniyama-Shimura conjecture to Fermat's last theorem

Kenneth A. Ribet

Annales de la Faculté des sciences de Toulouse : Mathématiques (1990)

  • Volume: 11, Issue: 1, page 116-139
  • ISSN: 0240-2963

How to cite

top

Ribet, Kenneth A.. "From the Taniyama-Shimura conjecture to Fermat's last theorem." Annales de la Faculté des sciences de Toulouse : Mathématiques 11.1 (1990): 116-139. <http://eudml.org/doc/73248>.

@article{Ribet1990,
author = {Ribet, Kenneth A.},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Taniyama-Shimura-Weil conjecture; Fermat's conjecture; G. Frey's elliptic curve; reduction at the prime two},
language = {eng},
number = {1},
pages = {116-139},
publisher = {UNIVERSITE PAUL SABATIER},
title = {From the Taniyama-Shimura conjecture to Fermat's last theorem},
url = {http://eudml.org/doc/73248},
volume = {11},
year = {1990},
}

TY - JOUR
AU - Ribet, Kenneth A.
TI - From the Taniyama-Shimura conjecture to Fermat's last theorem
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1990
PB - UNIVERSITE PAUL SABATIER
VL - 11
IS - 1
SP - 116
EP - 139
LA - eng
KW - Taniyama-Shimura-Weil conjecture; Fermat's conjecture; G. Frey's elliptic curve; reduction at the prime two
UR - http://eudml.org/doc/73248
ER -

References

top
  1. [1] Atkin ( A.O.L.) and Lehner ( J.) .— Hecke operators on Γo(m), Math. Ann.185, 134-160 (1970) Zbl0177.34901MR268123
  2. [2] Carayol ( H.) .— Sur la mauvaise réduction des courbes de Shimura, Compositio Math.59, 151-230 (1986) Zbl0607.14021MR860139
  3. [3] Cerednik ( I.V.) .— Uniformization of algebraic curves by discrete arithmetic subgroups of PGL2(kw) with compact quotients (in Russian), Mat. Sb.100 , 59-88 (1976). Translation in Math USSR Sb.29, 55-78 (1976) Zbl0379.14010MR491706
  4. [4] Deligne ( P.) and Rapoport ( M.) .— Les schémas de modules de courbes elliptiques, Lecture Notes in Math.349, 143-316 (1973) Zbl0281.14010MR337993
  5. [5] Deligne ( P.) AND Serre ( J-P.) .— Formes modulaires de poids 1, Ann. Sci. Ec. Norm. Sup.7, 507-530 (1974) Zbl0321.10026MR379379
  6. [6] Drinfeld ( V.G.) .— Coverings of p-adic symmetric regions (in Russian), Functional. Anal. i Prilozen.10, 29-40 (1976). Translation in Funct. Anal. Appl.10, 107-115 (1976) Zbl0346.14010MR422290
  7. [7] Edixhoven ( S.J.) .— Minimal resolution and stable reduction of Xo(N), To appear Zbl0679.14009
  8. [8] Edixhoven ( S.J.) .— L'action de l'algèbre de Hecke sur les groupes de composantes des jacobiennes des courbes modulaires est "Eisenstein", To appear Zbl0781.14019MR1141457
  9. [9] Faltings ( G.) .— Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math73, 349-366 (1983). English translation in : Arithmetic Geometry, G. Cornell and J. H. Silverman, eds. New York : Springer-Verlag (1986) Zbl0588.14026MR718935
  10. [10] Frey ( G.) .— Links between stable elliptic curves and certain diophantine equations, Annales Universitatis Saraviensis1, 1-40 (1986) Zbl0586.10010MR853387
  11. [11] Frey ( G.) .— Links between solutions of A - B = C and elliptic curves, Lecture Notes in Math.1380, 31-62 (1989) Zbl0688.14018MR1009792
  12. [12] Grothendieck ( A.) .— SGA7 I, Exposé IX. Lecture Notes in Math.288, 313-523 (1972) Zbl0248.14006
  13. [13] Husemöller ( D.) .— Elliptic Curves, Graduate Texts in Mathematics111. New York: Springer-Verlag (1987) Zbl0605.14032MR868861
  14. [14] Jordan ( B.) and Livné ( R.) .— Local diophantine properties of Shimura curves, Math. Ann.270, 235-248 (1985) Zbl0536.14018MR771981
  15. [15] Jordan ( B.) and Livné ( R.) .— On the Néron model of Jacobians of Shimura curves, Compositio Math.60, 227-236 (1986) Zbl0609.14018MR868139
  16. [16] Katz ( N.M.) and Mazur ( B.) .— Arithmetic Moduli of Elliptic Curves, Annals of Math. Studies108. Princeton: Princeton University Press, (1985) Zbl0576.14026MR772569
  17. [17] Kurihara ( A.) . — On some examples of equations defining Shimura curves and the Mumford uniformization, J. Fac. Sci. Univ. Tokyo, Sec. IA, 25, 277-300 (1979) Zbl0428.14012MR523989
  18. [18] Mazur ( B.) .— Modular curves and the Eisenstein ideal, Publ. Math. IHES47, 33-186 (1977) Zbl0394.14008MR488287
  19. [19] Mazur ( B.) .— Number theory as gadfly, American Math. Monthly. To appear Zbl0764.11021MR1121312
  20. [20] Mazur ( B.) AND Ribet ( K.) .— Two-dimensional representations in the arithmetic of modular curves, To appear Zbl0780.14015MR1141460
  21. [21] Oesterlé ( J.) .— Nouvelles approches du "théorème" de Fermat, Séminaire Bourbaki n° 694 (1987-88). Astérisque161-162, 165-186 (1988) Zbl0668.10024MR992208
  22. [22] Ogg ( A.) .— Rational points on certain elliptic modular curves, Proc. Symp. Pure Math.24, 221-231 (1973) Zbl0273.14008MR337974
  23. [23] Ogg ( A.).— Hyperelliptic modular curves, Bull. SMF102, 449-462 (1974) Zbl0314.10018MR364259
  24. [24] Raynaud ( M.) .— Spécialisation du foncteur de Picard, Publ. Math. IHES38, 27-76 (1970) Zbl0207.51602MR282993
  25. [25] Ribet ( K.) .— On modular representations of Gal(Q/Q) arising from modular forms, Preprint Zbl0773.11039MR1047143
  26. [26] Ribet ( K.) .— Bimodules and abelian surfaces, Advanced Studies in Pure Mathematics17, 359-407 (1989) Zbl0742.11033MR1097624
  27. [27] Ribet ( K.) .— On the component groups and the Shimura subgroup of Jo(N), Sém. Th. Nombres, Université Bordeaux, 1987-88 Zbl0691.14009MR993107
  28. [28] Serre ( J-P.) .— Abelian l-adic Representations and Elliptic Curves, New York: W.A. Benjamin1968. (Republished 1989 by Addison-Wesley) Zbl0186.25701
  29. [29] Serre ( J-P.) .— Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math.15, 259-331 (1972) Zbl0235.14012MR387283
  30. [30] Serre ( J-P.) .— Sur les représentations modulaires de degré 2 de Gal(Q/Q), Duke Math. J.54, 179-230 (1987) Zbl0641.10026MR885783
  31. [31] Serre ( J-P.) and Tate, ( J.) .— Good reduction of abelian varieties, Ann. of Math.88, 492-517 (1968) Zbl0172.46101MR236190
  32. [32] Shimura ( G.) .— Introduction to the Arithmetic Theory of Automorphic Functions, Princeton: Princeton University Press (1971) Zbl0221.10029
  33. [33] Shimura ( G.) . — On elliptic curves with complex multiplication as factors of the Jacobians of modular function fields, Nagoya Math. J.43, 199-208 (1971) Zbl0225.14015MR296050
  34. [34] Silverman ( J.) .— The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics106. New York: Springer-Verlag (1986) Zbl0585.14026MR817210
  35. [35] Weil ( A.) .— Über die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann.168, 165- 172 (1967) Zbl0158.08601MR207658

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.