Bi-subharmonic distributions on 𝐑 n ( n 2 )

Allami Benyaiche

Mathematica Bohemica (1994)

  • Volume: 119, Issue: 1, page 1-13
  • ISSN: 0862-7959

Abstract

top
L’object de ce travail est l’etude des fonctions fonctions localement sommable ω sur 𝐑 n , n 2 , vérifiant Δ 2 ω 0 (où Δ est Laplacien pris au sens des distributions) et que se comportent à l’infini comme des fonctions sousharmoniques. En parculier, nous caractérisons les fonctious qui sont à la fois bi-sousharmoniques et sousharmoniques.

How to cite

top

Benyaiche, Allami. "Distributions bi-sousharmoniques sur $\mathbf {R}^n (n\ge 2)$." Mathematica Bohemica 119.1 (1994): 1-13. <http://eudml.org/doc/29357>.

@article{Benyaiche1994,
author = {Benyaiche, Allami},
journal = {Mathematica Bohemica},
keywords = {bi-subharmonic functions; biharmonic functions; order of a function; bi-subharmonic functions; biharmonic functions; order of a function},
language = {fre},
number = {1},
pages = {1-13},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Distributions bi-sousharmoniques sur $\mathbf \{R\}^n (n\ge 2)$},
url = {http://eudml.org/doc/29357},
volume = {119},
year = {1994},
}

TY - JOUR
AU - Benyaiche, Allami
TI - Distributions bi-sousharmoniques sur $\mathbf {R}^n (n\ge 2)$
JO - Mathematica Bohemica
PY - 1994
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 119
IS - 1
SP - 1
EP - 13
LA - fre
KW - bi-subharmonic functions; biharmonic functions; order of a function; bi-subharmonic functions; biharmonic functions; order of a function
UR - http://eudml.org/doc/29357
ER -

References

top
  1. Anandam V., On the integral representation of bisubharmonic functions, Ann. Acad. Sci. Fenn, Serie A. I. Mathematica 6(1983), 357-368. (1983) Zbl0513.31008MR0731791
  2. Aronszajn N., Creese T.M., Lipkin L.J., Polyharmonic functions, Clarendon Press, Oxford, 1983. (1983) Zbl0514.31001MR0745128
  3. Arsove M., 10.1090/S0002-9947-1953-0060075-4, Trans. Amer. Math. Soc. 75(1953), 526-551. (1953) Zbl0052.33302MR0060075DOI10.1090/S0002-9947-1953-0060075-4
  4. Benyaïche A., Distributions bi-sousharmoniques sur la boule unité de R n (n 2), Rev. Roum Math. Pures Appl. 56(1991), no. 1-2, 3-20. (1991) MR1144531
  5. Brelôt M., Fonctions sousharmoniques associées à une mesure de Radon, Acad. Roum, section de Jasy 3-4 (1951), 114-118. (1951) MR0041989
  6. Brelôt M., Théorie classique du potentiel, C.D.U, Paris, 1965. (1965) 
  7. Duffin R.J., Nehari Z., 10.1090/S0002-9939-1961-0141793-6, Proc Amer. Math. Soc. 12 (1961), 110-115. (1961) Zbl0097.08504MR0141793DOI10.1090/S0002-9939-1961-0141793-6
  8. Hayman W.K., Kennedy P.B., Subharmonic functions. I, Academic Press, New York - London, 1976. (1976) MR0460672
  9. Nevanlinna R., Théorème de Picard et la théorie des fonctions méromorphes, Gauthier Villars et Cie, Paris, 1919. (1919) 
  10. Nicolescu M., Les fonctions polyharmoniques, - Act. Sci et Ind. Herman, Paris, 1936. (1936) 
  11. Pčelin B.K., On the general theory of polyharmonic functions, Dokl. Akad. Nauk. SSSR, T. 187 (1969), no. 5. (1969) MR0252668
  12. Pčelin B.K., On the theory of almost everywhere polyharmonic functions, Dokl. Akad. Nauk. SSSR, T. 221 (1975), no. 1. (1975) MR0442260
  13. Premalatha, Anandam V., 10.5186/aasfm.1981.0615, Ann. Acad. Sci. Fenn, Serie A. I., Math 6 (1981), 189-196. (1981) MR0658923DOI10.5186/aasfm.1981.0615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.