Martin boundary associated with a system of PDE
Allami Benyaiche; Salma Ghiate
Commentationes Mathematicae Universitatis Carolinae (2006)
- Volume: 47, Issue: 3, page 399-425
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topBenyaiche, Allami, and Ghiate, Salma. "Martin boundary associated with a system of PDE." Commentationes Mathematicae Universitatis Carolinae 47.3 (2006): 399-425. <http://eudml.org/doc/249874>.
@article{Benyaiche2006,
abstract = {In this paper, we study the Martin boundary associated with a harmonic structure given by a coupled partial differential equations system. We give an integral representation for non negative harmonic functions of this structure. In particular, we obtain such results for biharmonic functions (i.e. $\triangle ^\{2\}\varphi =0$) and for non negative solutions of the equation $\triangle ^\{2\}\varphi =\varphi $.},
author = {Benyaiche, Allami, Ghiate, Salma},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Martin boundary; biharmonic functions; coupled partial differential equations; Martin boundary; biharmonic function},
language = {eng},
number = {3},
pages = {399-425},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Martin boundary associated with a system of PDE},
url = {http://eudml.org/doc/249874},
volume = {47},
year = {2006},
}
TY - JOUR
AU - Benyaiche, Allami
AU - Ghiate, Salma
TI - Martin boundary associated with a system of PDE
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2006
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 47
IS - 3
SP - 399
EP - 425
AB - In this paper, we study the Martin boundary associated with a harmonic structure given by a coupled partial differential equations system. We give an integral representation for non negative harmonic functions of this structure. In particular, we obtain such results for biharmonic functions (i.e. $\triangle ^{2}\varphi =0$) and for non negative solutions of the equation $\triangle ^{2}\varphi =\varphi $.
LA - eng
KW - Martin boundary; biharmonic functions; coupled partial differential equations; Martin boundary; biharmonic function
UR - http://eudml.org/doc/249874
ER -
References
top- Benyaiche A., On almost biharmonic functions in , Publ. Math., Ec. Norm. Supér, Takaddoum 4 (1988), 47-53 (See Zbl. Math. 678). (1988)
- Benyaiche A., Distributions bi-sousharmoniques sur , Math. Bohem. 119 (1994), 1 1-13. (1994) MR1303547
- Benyaiche A., Mesures de représentation sur les espaces biharmoniques, Proc. ICPT 91, Kluwer Acad. Publ., Dordrecht, 1994, pp.171-178. Zbl0824.31006MR1293761
- Benyaiche A., Ghiate S., Propriété de moyenne restriente associée à un système d'E.D.P., Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. (1) 27 (2003), 125-143. (2003) MR2056415
- Benyaiche A., Ghiate S., Frontière de Martin biharmonique, preprint, 2000.
- Benyaiche A., El Gourari A., Caractérisation des ensembles essentiels, J. Math. Soc. Japan 54 2 (2002), 467-486. (2002) MR1883527
- Bliedtner J., Hansen W., Potential Theory: An Analytic and Probabilistic Approach to Balayage, Universitext, Springer, Berlin, 1986. Zbl0706.31001MR0850715
- Boukricha A., Espaces biharmoniques, Théorie du potentiel (Orsay, 1983), Lecture Notes in Math. 1096, Springer, Berlin, 1984, pp.116-149. Zbl0567.31006MR0890356
- Bouleau N., Espaces biharmoniques et couplage de processus de Markov, J. Math. Pures Appl. 59 (1980), 187-240. (1980) Zbl0403.60068MR0581988
- Brelot M., On Topologies and Boundaries in Potential Theory, Lecture Notes in Math. 175, Springer, Berlin, 1971. Zbl0277.31002MR0281940
- Brelot M., Eléments de la théorie classique du potentiel, 4ème edition, Centre de Documentation Universitaire, Paris, 1969. Zbl0116.07503MR0106366
- Constantinescu C., Cornea A., Potential Theory on Harmonic Spaces, Springer, New York-Heidelberg, 1972. Zbl0248.31011MR0419799
- Doob J.L., Classical Potential Theory and its Probabilistic Counterpart, Springer, New York, 1984. Zbl0990.31001MR0731258
- Hansen W., Modification of balayage spaces by transitions with application to coupling of PDE's, Nagoya Math. J. 169 (2003), 77-118. (2003) Zbl1094.31005MR1962524
- Helms L.L., Introduction to Potential Theory, Wiley, New York, 1969. Zbl0188.17203MR0261018
- Phelps R.R., Lectures on Choquet's Theorem, Van Nostrand, Princeton-Toronto-London, 1966. Zbl0997.46005MR0193470
- Hervé R.M., Recherches axiomatiques sur la théorie des fonctions surharmoniques et du potentiel, Ann. Inst. Fourier 12 (1962), 415-571. (1962) MR0139756
- Hervé R.M., Hervé M., Les fonctions surharmoniques associées à un opérateur elliptique du second ordre à coefficients discontinus, Ann. Inst. Fourier 19 1 (1969), 305-359. (1969) MR0261027
- Meyer M., Balayage spaces on topological sums, Potential Theory (Prague, 1987), Plenum, New York, 1988, pp. 237-246. Zbl0691.31004MR0986301
- Nakai M., Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan 26 (1974), 483-507. (1974) Zbl0281.30012MR0361119
- Smyrnelis E.P., Axiomatique des fonctions biharmoniques, I, Ann. Inst. Fourier 26 1 35-97 (1976). (1976) MR0477101
- Smyrnelis E.P., Axiomatique des fonctions biharmoniques, II, Ann. Inst. Fourier 26 3 1-47 (1976). (1976) MR0477101
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.