Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 715-732
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLiu, Yi, and Yuan, Wen. "Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces." Czechoslovak Mathematical Journal 67.3 (2017): 715-732. <http://eudml.org/doc/294082>.
@article{Liu2017,
abstract = {Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that $\{(1-\theta )\}/\{p_\{0\}\}+\{\theta \}/\{p_\{1\}\}=\{1\}/\{p\}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^\{\{p\}/\{p_0\}\}$ and $\varphi _1^\{\{p\}/\{p_1\}\}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^\{p_0),\lambda \}_\{\varphi _0\}(\mathcal \{X\}), L^\{p_1),\lambda \}_\{\varphi _1\}(\mathcal \{X\}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal \{X\}$ is the generalized grand Morrey space $L^\{p),\lambda \}_\{\varphi \}(\mathcal \{X\})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.},
author = {Liu, Yi, Yuan, Wen},
journal = {Czechoslovak Mathematical Journal},
keywords = {grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method},
language = {eng},
number = {3},
pages = {715-732},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces},
url = {http://eudml.org/doc/294082},
volume = {67},
year = {2017},
}
TY - JOUR
AU - Liu, Yi
AU - Yuan, Wen
TI - Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 715
EP - 732
AB - Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
LA - eng
KW - grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method
UR - http://eudml.org/doc/294082
ER -
References
top- Adams, D. R., Xiao, J., 10.1512/iumj.2004.53.2470, Indiana Univ. Math. J. 53 (2004), 1629-1663. (2004) Zbl1100.31009MR2106339DOI10.1512/iumj.2004.53.2470
- Adams, D. R., Xiao, J., 10.1007/s11512-010-0134-0, Ark. Mat. 50 (2012), 201-230. (2012) Zbl1254.31009MR2961318DOI10.1007/s11512-010-0134-0
- Anatriello, G., 10.1007/s13348-013-0096-1, Collect. Math. 65 (2014), 273-284. (2014) Zbl1321.46029MR3189282DOI10.1007/s13348-013-0096-1
- Blasco, O., Ruiz, A., Vega, L., Non interpolation in Morrey-Campanato and block spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. (1999) Zbl0955.46013MR1679077
- Campanato, S., Murthy, M. K. V., Una generalizzazione del teorema di Riesz-Thorin, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19 (1965), 87-100 Italian. (1965) Zbl0145.16301MR0180860
- Capone, C., Formica, M. R., Giova, R., 10.1016/j.na.2013.02.021, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 125-131. (2013) Zbl1286.46030MR3040353DOI10.1016/j.na.2013.02.021
- Fiorenza, A., Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51 (2000), 131-148. (2000) Zbl0960.46022MR1776829
- Fiorenza, A., Gupta, B., Jain, P., 10.4064/sm188-2-2, Stud. Math. 188 (2008), 123-133. (2008) Zbl1161.42011MR2430998DOI10.4064/sm188-2-2
- Fiorenza, A., Karadzhov, G. E., 10.4171/ZAA/1215, Z. Anal. Anwend. 23 (2004), 657-681. (2004) Zbl1071.46023MR2110397DOI10.4171/ZAA/1215
- Fiorenza, A., Krbec, M., 10.1017/s0027763000007285, Nagoya Math. J. 158 (2000), 43-61. (2000) Zbl1039.42015MR1766576DOI10.1017/s0027763000007285
- Fiorenza, A., Mercaldo, A., Rakotoson, J. M., 10.1016/S0893-9659(01)00075-1, Appl. Math. Lett. 14 (2001), 979-981. (2001) Zbl0983.35067MR1855941DOI10.1016/S0893-9659(01)00075-1
- Fiorenza, A., Mercaldo, A., Rakotoson, J. M., 10.3934/dcds.2002.8.893, Discrete Contin. Dyn. Syst. 8 (2002), 893-906. (2002) Zbl1007.35034MR1920650DOI10.3934/dcds.2002.8.893
- Fiorenza, A., Sbordone, C., Existence and uniqueness results for solutions of nonlinear equations with right hand side in , Stud. Math. 127 (1998), 223-231. (1998) Zbl0891.35039MR1489454
- Futamura, T., Mizuta, Y., Ohno, T., Sobolev's theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent, Proc. 4th Int. Symposium on Banach and Function Spaces, Kitakyushu, 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 353-365. (2014) Zbl1332.31007MR3289785
- Greco, L., Iwaniec, T., Sbordone, C., 10.1007/BF02678192, Manuscr. Math. 92 (1997), 249-258. (1997) Zbl0869.35037MR1428651DOI10.1007/BF02678192
- Gustavsson, J., 10.4064/sm-72-3-237-251, Stud. Math. 72 (1982), 237-251. (1982) Zbl0497.46051MR0671399DOI10.4064/sm-72-3-237-251
- Gustavsson, J., Peetre, J., 10.4064/sm-60-1-33-59, Stud. Math. 60 (1977), 33-59. (1977) Zbl0353.46019MR0438102DOI10.4064/sm-60-1-33-59
- Iwaniec, T., Sbordone, C., 10.1007/BF00375119, Arch. Ration. Mech. Anal. 119 (1992), 129-143. (1992) Zbl0766.46016MR1176362DOI10.1007/BF00375119
- Iwaniec, T., Sbordone, C., 10.1007/BF02819450, J. Anal. Math. 74 (1998), 183-212. (1998) Zbl0909.35039MR1631658DOI10.1007/BF02819450
- Kokilashvili, V., Meskhi, A., Rafeiro, H., 10.4064/sm217-2-4, Stud. Math. 217 (2013), 159-178. (2013) Zbl1292.42009MR3117336DOI10.4064/sm217-2-4
- Kokilashvili, V., Meskhi, A., Rafeiro, H., 10.1515/gmj-2013-0009, Georgian Math. J. 20 (2013), 43-64. (2013) Zbl1280.46017MR3037076DOI10.1515/gmj-2013-0009
- Kokilashvili, V., Meskhi, A., Rafeiro, H., 10.1080/17476933.2013.831844, Complex Var. Elliptic Equ. 59 (2014), 1169-1184. (2014) Zbl1290.35285MR3197041DOI10.1080/17476933.2013.831844
- Lemarié-Rieusset, P. G., 10.1007/s11118-012-9295-8, Potential Anal. 38 (2013), 741-752 erratum ibid. 41 2014 1359-1362. (2013) Zbl1267.42024MR3034598DOI10.1007/s11118-012-9295-8
- Lu, Y., Yang, D., Yuan, W., 10.4153/CMB-2013-009-4, Can. Math. Bull. 57 (2014), 598-608. (2014) Zbl1316.46021MR3239123DOI10.4153/CMB-2013-009-4
- Meskhi, A., Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces, Proc. A. Razmadze Math. Inst. 151 (2009), 139-143. (2009) Zbl1194.42024MR2584418
- Meskhi, A., 10.1080/17476933.2010.534793, Complex Var. Elliptic Equ. 56 (2011), 1003-1019. (2011) Zbl1261.42022MR2838234DOI10.1080/17476933.2010.534793
- Mizuta, Y., Ohno, T., 10.1016/j.jmaa.2014.05.082, J. Math. Anal. Appl. 420 (2014), 268-278. (2014) Zbl1305.42017MR3229824DOI10.1016/j.jmaa.2014.05.082
- C. B. Morrey, Jr., 10.2307/1989904, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.2307/1989904
- Nilsson, P., 10.4064/sm-82-2-135-154, Stud. Math. 82 (1985), 135-154. (1985) Zbl0549.46038MR0823972DOI10.4064/sm-82-2-135-154
- Ohno, T., Shimomura, T., 10.1007/s10587-014-0095-8, Czech. Math. J. 64 (2014), 209-228. (2014) Zbl1340.31009MR3247456DOI10.1007/s10587-014-0095-8
- Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) Zbl0175.42602MR0241965DOI10.1016/0022-1236(69)90022-6
- Peetre, J., Sur l'utilisation des suites inconditionellement sommables dans la théorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190 French. (1971) Zbl0233.46047MR0308811
- Ruiz, A., Vega, L., 10.5565/PUBLMAT_39295_15, Publ. Mat., Barc. 39 (1995), 405-411. (1995) Zbl0849.47022MR1370896DOI10.5565/PUBLMAT_39295_15
- Sawano, Y., Tanaka, H., 10.1007/s10114-005-0660-z, Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. (2005) Zbl1129.42403MR2190025DOI10.1007/s10114-005-0660-z
- Sawano, Y., Tanaka, H., 10.3836/tjm/1264170244, Tokyo J. Math. 32 (2009), 471-486. (2009) Zbl1193.42094MR2589957DOI10.3836/tjm/1264170244
- Sbordone, C., Grand Sobolev spaces and their applications to variational problems, Matematiche 51 (1996), 335-347. (1996) Zbl0915.46030MR1488076
- Stampacchia, G., 10.1002/cpa.3160170303, Commun. Pure Appl. Math. 17 (1964), 293-306. (1964) Zbl0149.09201MR0178350DOI10.1002/cpa.3160170303
- Ye, X., Boundedness of commutators of singular and potential operators in grand Morrey spaces, Acta Math. Sin., Chin. Ser. 54 (2011), 343-352 Chinese. (2011) Zbl1240.42085MR2830303
- Yuan, W., Sickel, W., Yang, D., 10.1007/s11425-015-5047-8, Sci. China, Math. 58 (2015), 1835-1908. (2015) Zbl1337.46030MR3383989DOI10.1007/s11425-015-5047-8
- Zorko, C. T., 10.2307/2045731, Proc. Am. Math. Soc. 98 (1986), 586-592. (1986) Zbl0612.43003MR0861756DOI10.2307/2045731
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.