Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces

Yi Liu; Wen Yuan

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 715-732
  • ISSN: 0011-4642

Abstract

top
Let θ ( 0 , 1 ) , λ [ 0 , 1 ) and p , p 0 , p 1 ( 1 , ] be such that ( 1 - θ ) / p 0 + θ / p 1 = 1 / p , and let ϕ , ϕ 0 , ϕ 1 be some admissible functions such that ϕ , ϕ 0 p / p 0 and ϕ 1 p / p 1 are equivalent. We first prove that, via the ± interpolation method, the interpolation L ϕ 0 p 0 ) , λ ( 𝒳 ) , L ϕ 1 p 1 ) , λ ( 𝒳 ) , θ of two generalized grand Morrey spaces on a quasi-metric measure space 𝒳 is the generalized grand Morrey space L ϕ p ) , λ ( 𝒳 ) . Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.

How to cite

top

Liu, Yi, and Yuan, Wen. "Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces." Czechoslovak Mathematical Journal 67.3 (2017): 715-732. <http://eudml.org/doc/294082>.

@article{Liu2017,
abstract = {Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that $\{(1-\theta )\}/\{p_\{0\}\}+\{\theta \}/\{p_\{1\}\}=\{1\}/\{p\}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^\{\{p\}/\{p_0\}\}$ and $\varphi _1^\{\{p\}/\{p_1\}\}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^\{p_0),\lambda \}_\{\varphi _0\}(\mathcal \{X\}), L^\{p_1),\lambda \}_\{\varphi _1\}(\mathcal \{X\}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal \{X\}$ is the generalized grand Morrey space $L^\{p),\lambda \}_\{\varphi \}(\mathcal \{X\})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.},
author = {Liu, Yi, Yuan, Wen},
journal = {Czechoslovak Mathematical Journal},
keywords = {grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method},
language = {eng},
number = {3},
pages = {715-732},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces},
url = {http://eudml.org/doc/294082},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Liu, Yi
AU - Yuan, Wen
TI - Interpolation and duality of generalized grand Morrey spaces on quasi-metric measure spaces
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 715
EP - 732
AB - Let $\theta \in (0,1)$, $\lambda \in [0,1)$ and $p,p_0,p_1\in (1,\infty ]$ be such that ${(1-\theta )}/{p_{0}}+{\theta }/{p_{1}}={1}/{p}$, and let $\varphi , \varphi _0, \varphi _1 $ be some admissible functions such that $\varphi , \varphi _0^{{p}/{p_0}}$ and $\varphi _1^{{p}/{p_1}}$ are equivalent. We first prove that, via the $\pm $ interpolation method, the interpolation $\langle L^{p_0),\lambda }_{\varphi _0}(\mathcal {X}), L^{p_1),\lambda }_{\varphi _1}(\mathcal {X}), \theta \rangle $ of two generalized grand Morrey spaces on a quasi-metric measure space $\mathcal {X}$ is the generalized grand Morrey space $L^{p),\lambda }_{\varphi }(\mathcal {X})$. Then, by using block functions, we also find a predual space of the generalized grand Morrey space. These results are new even for generalized grand Lebesgue spaces.
LA - eng
KW - grand Lebesgue space; grand Morrey space; Gagliardo-Peetre method; quasi-metric measure space; Calderón product; predual space; $\pm $ interpolation method
UR - http://eudml.org/doc/294082
ER -

References

top
  1. Adams, D. R., Xiao, J., 10.1512/iumj.2004.53.2470, Indiana Univ. Math. J. 53 (2004), 1629-1663. (2004) Zbl1100.31009MR2106339DOI10.1512/iumj.2004.53.2470
  2. Adams, D. R., Xiao, J., 10.1007/s11512-010-0134-0, Ark. Mat. 50 (2012), 201-230. (2012) Zbl1254.31009MR2961318DOI10.1007/s11512-010-0134-0
  3. Anatriello, G., 10.1007/s13348-013-0096-1, Collect. Math. 65 (2014), 273-284. (2014) Zbl1321.46029MR3189282DOI10.1007/s13348-013-0096-1
  4. Blasco, O., Ruiz, A., Vega, L., Non interpolation in Morrey-Campanato and block spaces, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 28 (1999), 31-40. (1999) Zbl0955.46013MR1679077
  5. Campanato, S., Murthy, M. K. V., Una generalizzazione del teorema di Riesz-Thorin, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 19 (1965), 87-100 Italian. (1965) Zbl0145.16301MR0180860
  6. Capone, C., Formica, M. R., Giova, R., 10.1016/j.na.2013.02.021, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 85 (2013), 125-131. (2013) Zbl1286.46030MR3040353DOI10.1016/j.na.2013.02.021
  7. Fiorenza, A., Duality and reflexivity in grand Lebesgue spaces, Collect. Math. 51 (2000), 131-148. (2000) Zbl0960.46022MR1776829
  8. Fiorenza, A., Gupta, B., Jain, P., 10.4064/sm188-2-2, Stud. Math. 188 (2008), 123-133. (2008) Zbl1161.42011MR2430998DOI10.4064/sm188-2-2
  9. Fiorenza, A., Karadzhov, G. E., 10.4171/ZAA/1215, Z. Anal. Anwend. 23 (2004), 657-681. (2004) Zbl1071.46023MR2110397DOI10.4171/ZAA/1215
  10. Fiorenza, A., Krbec, M., 10.1017/s0027763000007285, Nagoya Math. J. 158 (2000), 43-61. (2000) Zbl1039.42015MR1766576DOI10.1017/s0027763000007285
  11. Fiorenza, A., Mercaldo, A., Rakotoson, J. M., 10.1016/S0893-9659(01)00075-1, Appl. Math. Lett. 14 (2001), 979-981. (2001) Zbl0983.35067MR1855941DOI10.1016/S0893-9659(01)00075-1
  12. Fiorenza, A., Mercaldo, A., Rakotoson, J. M., 10.3934/dcds.2002.8.893, Discrete Contin. Dyn. Syst. 8 (2002), 893-906. (2002) Zbl1007.35034MR1920650DOI10.3934/dcds.2002.8.893
  13. Fiorenza, A., Sbordone, C., Existence and uniqueness results for solutions of nonlinear equations with right hand side in L 1 , Stud. Math. 127 (1998), 223-231. (1998) Zbl0891.35039MR1489454
  14. Futamura, T., Mizuta, Y., Ohno, T., Sobolev's theorem for Riesz potentials of functions in grand Morrey spaces of variable exponent, Proc. 4th Int. Symposium on Banach and Function Spaces, Kitakyushu, 2012 M. Kato et al. Yokohama Publishers, Yokohama (2014), 353-365. (2014) Zbl1332.31007MR3289785
  15. Greco, L., Iwaniec, T., Sbordone, C., 10.1007/BF02678192, Manuscr. Math. 92 (1997), 249-258. (1997) Zbl0869.35037MR1428651DOI10.1007/BF02678192
  16. Gustavsson, J., 10.4064/sm-72-3-237-251, Stud. Math. 72 (1982), 237-251. (1982) Zbl0497.46051MR0671399DOI10.4064/sm-72-3-237-251
  17. Gustavsson, J., Peetre, J., 10.4064/sm-60-1-33-59, Stud. Math. 60 (1977), 33-59. (1977) Zbl0353.46019MR0438102DOI10.4064/sm-60-1-33-59
  18. Iwaniec, T., Sbordone, C., 10.1007/BF00375119, Arch. Ration. Mech. Anal. 119 (1992), 129-143. (1992) Zbl0766.46016MR1176362DOI10.1007/BF00375119
  19. Iwaniec, T., Sbordone, C., 10.1007/BF02819450, J. Anal. Math. 74 (1998), 183-212. (1998) Zbl0909.35039MR1631658DOI10.1007/BF02819450
  20. Kokilashvili, V., Meskhi, A., Rafeiro, H., 10.4064/sm217-2-4, Stud. Math. 217 (2013), 159-178. (2013) Zbl1292.42009MR3117336DOI10.4064/sm217-2-4
  21. Kokilashvili, V., Meskhi, A., Rafeiro, H., 10.1515/gmj-2013-0009, Georgian Math. J. 20 (2013), 43-64. (2013) Zbl1280.46017MR3037076DOI10.1515/gmj-2013-0009
  22. Kokilashvili, V., Meskhi, A., Rafeiro, H., 10.1080/17476933.2013.831844, Complex Var. Elliptic Equ. 59 (2014), 1169-1184. (2014) Zbl1290.35285MR3197041DOI10.1080/17476933.2013.831844
  23. Lemarié-Rieusset, P. G., 10.1007/s11118-012-9295-8, Potential Anal. 38 (2013), 741-752 erratum ibid. 41 2014 1359-1362. (2013) Zbl1267.42024MR3034598DOI10.1007/s11118-012-9295-8
  24. Lu, Y., Yang, D., Yuan, W., 10.4153/CMB-2013-009-4, Can. Math. Bull. 57 (2014), 598-608. (2014) Zbl1316.46021MR3239123DOI10.4153/CMB-2013-009-4
  25. Meskhi, A., Maximal functions and singular integrals in Morrey spaces associated with grand Lebesgue spaces, Proc. A. Razmadze Math. Inst. 151 (2009), 139-143. (2009) Zbl1194.42024MR2584418
  26. Meskhi, A., 10.1080/17476933.2010.534793, Complex Var. Elliptic Equ. 56 (2011), 1003-1019. (2011) Zbl1261.42022MR2838234DOI10.1080/17476933.2010.534793
  27. Mizuta, Y., Ohno, T., 10.1016/j.jmaa.2014.05.082, J. Math. Anal. Appl. 420 (2014), 268-278. (2014) Zbl1305.42017MR3229824DOI10.1016/j.jmaa.2014.05.082
  28. C. B. Morrey, Jr., 10.2307/1989904, Trans. Am. Math. Soc. 43 (1938), 126-166. (1938) Zbl0018.40501MR1501936DOI10.2307/1989904
  29. Nilsson, P., 10.4064/sm-82-2-135-154, Stud. Math. 82 (1985), 135-154. (1985) Zbl0549.46038MR0823972DOI10.4064/sm-82-2-135-154
  30. Ohno, T., Shimomura, T., 10.1007/s10587-014-0095-8, Czech. Math. J. 64 (2014), 209-228. (2014) Zbl1340.31009MR3247456DOI10.1007/s10587-014-0095-8
  31. Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) Zbl0175.42602MR0241965DOI10.1016/0022-1236(69)90022-6
  32. Peetre, J., Sur l'utilisation des suites inconditionellement sommables dans la théorie des espaces d'interpolation, Rend. Sem. Mat. Univ. Padova 46 (1971), 173-190 French. (1971) Zbl0233.46047MR0308811
  33. Ruiz, A., Vega, L., 10.5565/PUBLMAT_39295_15, Publ. Mat., Barc. 39 (1995), 405-411. (1995) Zbl0849.47022MR1370896DOI10.5565/PUBLMAT_39295_15
  34. Sawano, Y., Tanaka, H., 10.1007/s10114-005-0660-z, Acta Math. Sin., Engl. Ser. 21 (2005), 1535-1544. (2005) Zbl1129.42403MR2190025DOI10.1007/s10114-005-0660-z
  35. Sawano, Y., Tanaka, H., 10.3836/tjm/1264170244, Tokyo J. Math. 32 (2009), 471-486. (2009) Zbl1193.42094MR2589957DOI10.3836/tjm/1264170244
  36. Sbordone, C., Grand Sobolev spaces and their applications to variational problems, Matematiche 51 (1996), 335-347. (1996) Zbl0915.46030MR1488076
  37. Stampacchia, G., 10.1002/cpa.3160170303, Commun. Pure Appl. Math. 17 (1964), 293-306. (1964) Zbl0149.09201MR0178350DOI10.1002/cpa.3160170303
  38. Ye, X., Boundedness of commutators of singular and potential operators in grand Morrey spaces, Acta Math. Sin., Chin. Ser. 54 (2011), 343-352 Chinese. (2011) Zbl1240.42085MR2830303
  39. Yuan, W., Sickel, W., Yang, D., 10.1007/s11425-015-5047-8, Sci. China, Math. 58 (2015), 1835-1908. (2015) Zbl1337.46030MR3383989DOI10.1007/s11425-015-5047-8
  40. Zorko, C. T., 10.2307/2045731, Proc. Am. Math. Soc. 98 (1986), 586-592. (1986) Zbl0612.43003MR0861756DOI10.2307/2045731

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.