On the characterization of harmonic functions with initial data in Morrey space
Bo Li; Jinxia Li; Bolin Ma; Tianjun Shen
Czechoslovak Mathematical Journal (2024)
- Volume: 74, Issue: 2, page 461-491
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLi, Bo, et al. "On the characterization of harmonic functions with initial data in Morrey space." Czechoslovak Mathematical Journal 74.2 (2024): 461-491. <http://eudml.org/doc/299369>.
@article{Li2024,
abstract = {Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^\{2\}$-Poincaré inequality. Consider the nonnegative operator $\mathcal \{L\}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal \{L\})u=0$ on $X\times \mathbb \{R\}_+$ satisfies an $\alpha $-Carleson condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal \{L\}$ with the trace in the generalized Morrey space $L^\{2,\alpha \}(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.},
author = {Li, Bo, Li, Jinxia, Ma, Bolin, Shen, Tianjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space},
language = {eng},
number = {2},
pages = {461-491},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the characterization of harmonic functions with initial data in Morrey space},
url = {http://eudml.org/doc/299369},
volume = {74},
year = {2024},
}
TY - JOUR
AU - Li, Bo
AU - Li, Jinxia
AU - Ma, Bolin
AU - Shen, Tianjun
TI - On the characterization of harmonic functions with initial data in Morrey space
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 461
EP - 491
AB - Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an $\alpha $-Carleson condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
LA - eng
KW - harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
UR - http://eudml.org/doc/299369
ER -
References
top- Adams, D. R., 10.1007/978-3-319-26681-7, Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). (2015) Zbl1339.42001MR3467116DOI10.1007/978-3-319-26681-7
- Adams, D. R., Xiao, J., 10.1007/s11512-010-0134-0, Ark. Mat. 50 (2012), 201-230. (2012) Zbl1254.31009MR2961318DOI10.1007/s11512-010-0134-0
- Akbulut, A., Guliyev, V. S., Noi, T., Sawano, Y., 10.4171/ZAA/1577, Z. Anal. Anwend. 36 (2017), 17-35. (2017) Zbl1362.42022MR3638966DOI10.4171/ZAA/1577
- Biroli, M., Mosco, U., 10.1007/BF01759352, Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 125-181. (1995) Zbl0851.31008MR1378473DOI10.1007/BF01759352
- Björn, A., Björn, J., 10.4171/099, EMS Tracts in Mathematics 17. EMS, Zürich (2011). (2011) Zbl1231.31001MR2867756DOI10.4171/099
- Campanato, S., Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 18 (1964), 137-160 Italian. (1964) Zbl0133.06801MR0167862
- Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
- Coulhon, T., Jiang, R., Koskela, P., Sikora, A., 10.1016/j.jfa.2019.108398, J. Funct. Anal. 278 (2020), Article ID 108398, 67 pages. (2020) Zbl1439.53041MR4056992DOI10.1016/j.jfa.2019.108398
- Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
- Duong, X. T., Xiao, J., Yan, L., 10.1007/s00041-006-6057-2, J. Fourier Anal. Appl. 13 (2007), 87-111. (2007) Zbl1133.42017MR2296729DOI10.1007/s00041-006-6057-2
- Duong, X. T., Yan, L., 10.1090/S0894-0347-05-00496-0, J. Am. Math. Soc. 18 (2005), 943-973. (2005) Zbl1078.42013MR2163867DOI10.1090/S0894-0347-05-00496-0
- Duong, X. T., Yan, L., Zhang, C., 10.1016/j.jfa.2013.09.008, J. Funct. Anal. 266 (2014), 2053-2085. (2014) Zbl1292.35099MR3150151DOI10.1016/j.jfa.2013.09.008
- Eriksson-Bique, S., Giovannardi, G., Korte, R., Shanmugalingam, N., Speight, G., 10.1016/j.jde.2021.10.029, J. Differ. Equations 306 (2022), 590-632. (2022) Zbl1477.30056MR4337822DOI10.1016/j.jde.2021.10.029
- Fabes, E. B., Johnson, R. L., Neri, U., 10.1512/iumj.1976.25.25012, Indiana Univ. Math. J. 25 (1976), 159-170. (1976) Zbl0306.46032MR0394172DOI10.1512/iumj.1976.25.25012
- Fabes, E. B., Kenig, C. E., Serapioni, R. P., 10.1080/03605308208820218, Commun. Partial Differ. Equations 7 (1982), 77-116. (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
- Fabes, E. B., Neri, U., 10.1215/S0012-7094-75-04260-X, Duke Math. J. 42 (1975), 725-734. (1975) Zbl0331.35032MR0397163DOI10.1215/S0012-7094-75-04260-X
- Fabes, E. B., Neri, U., 10.1090/S0002-9939-1980-0548079-8, Proc. Am. Math. Soc. 78 (1980), 33-39. (1980) Zbl0455.31004MR0548079DOI10.1090/S0002-9939-1980-0548079-8
- Fefferman, C. L., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
- Fukushima, M., Oshima, Y., Takeda, M., 10.1515/9783110889741, de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin (1994). (1994) Zbl0838.31001MR1303354DOI10.1515/9783110889741
- Haj{ł}asz, P., 10.1007/BF00275475, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022MR1401074DOI10.1007/BF00275475
- Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T., 10.1017/CBO9781316135914, New Mathematical Monographs 27. Cambridge University Press, Cambridge (2015). (2015) Zbl1332.46001MR3363168DOI10.1017/CBO9781316135914
- Huang, J., Li, P., Liu, Y., 10.1007/s43034-019-00005-4, Ann. Funct. Anal. 11 (2020), 314-333. (2020) Zbl1453.46029MR4091418DOI10.1007/s43034-019-00005-4
- Huang, Q., Zhang, C., 10.11650/tjm/181106, Taiwanese J. Math. 23 (2019), 1133-1151. (2019) Zbl1426.42020MR4012373DOI10.11650/tjm/181106
- Jiang, R., 10.1016/j.jfa.2011.08.011, J. Funct. Anal. 261 (2011), 3549-3584. (2011) Zbl1255.58008MR2838034DOI10.1016/j.jfa.2011.08.011
- Jiang, R., Li, B., 10.1007/s11425-020-1834-1, Sci. China, Math. 65 (2022), 1431-1468. (2022) Zbl1497.30020MR4444237DOI10.1007/s11425-020-1834-1
- Jiang, R., Lin, F., 10.1016/j.matpur.2019.02.009, J. Math. Pures Appl. (9) 133 (2020), 39-65. (2020) Zbl1433.58023MR4044674DOI10.1016/j.matpur.2019.02.009
- Jiang, R., Xiao, J., Yang, D., 10.1142/S0219530515500190, Anal. Appl., Singap. 14 (2016), 679-703. (2016) Zbl1366.46022MR3530272DOI10.1142/S0219530515500190
- Jin, Y., Li, B., Shen, T., 10.1007/s40840-023-01603-1, Bull. Malays. Math. Sci. Soc. (2) 47 (2024), Paper No. 12, 33 pages. (2024) Zbl7785602MR4670561DOI10.1007/s40840-023-01603-1
- Kalita, E. A., Dual Morrey spaces, Dokl. Math. 58 (1998), 85-87 translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 361 1998 447-449. (1998) Zbl1011.46032MR1693091
- Keith, S., Zhong, X., 10.4007/annals.2008.167.575, Ann. Math. (2) 167 (2008), 575-599. (2008) Zbl1180.46025MR2415381DOI10.4007/annals.2008.167.575
- Koskela, P., Yang, D., Zhou, Y., 10.1016/j.jfa.2009.11.004, J. Funct. Anal. 258 (2010), 2637-2661. (2010) Zbl1195.46034MR2593336DOI10.1016/j.jfa.2009.11.004
- Koskela, P., Yang, D., Zhou, Y., 10.1016/j.aim.2010.10.020, Adv. Math. 226 (2011), 3579-3621. (2011) Zbl1217.46019MR2764899DOI10.1016/j.aim.2010.10.020
- Li, B., Li, J., Lin, Q., Ma, B., Shen, T., 10.1017/prm.2023.58, (to appear) in Proc. R. Soc. Edinb., Sect. A, Math. DOI10.1017/prm.2023.58
- Li, B., Ma, B., Shen, T., Wu, X., Zhang, C., 10.1007/s12220-023-01245-6, J. Geom. Anal. 33 (2023), Article ID 215, 42 pages. (2023) Zbl1514.35255MR4581154DOI10.1007/s12220-023-01245-6
- Li, B., Shen, T., Tan, J., Wang, A., 10.1007/s13324-023-00834-6, Anal. Math. Phys. 13 (2023), Article ID 85, 31 pages. (2023) Zbl07768300MR4654920DOI10.1007/s13324-023-00834-6
- Li, H-Q., 10.1006/jfan.1998.3347, J. Funct. Anal. 161 (1999), 152-218 French. (1999) Zbl0929.22005MR1670222DOI10.1006/jfan.1998.3347
- Lin, C.-C., Liu, H., 10.1016/j.aim.2011.06.024, Adv. Math. 228 (2011), 1631-1688. (2011) Zbl1235.22012MR2824565DOI10.1016/j.aim.2011.06.024
- Liu, Y., Yuan, W., 10.21136/CMJ.2017.0081-16, Czech. Math. J. 67 (2017), 715-732. (2017) Zbl1464.46020MR3697911DOI10.21136/CMJ.2017.0081-16
- Martell, J. M., Mitrea, D., Mitrea, I., Mitrea, M., 10.2140/apde.2019.12.605, Anal. PDE 12 (2019), 605-720. (2019) Zbl1408.35029MR3864207DOI10.2140/apde.2019.12.605
- Mizuhara, T., 10.1007/978-4-431-68168-7_16, Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. (1991) Zbl0771.42007MR1261439DOI10.1007/978-4-431-68168-7_16
- C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math. (N.S.) 1 (1943), 1-130. (1943) Zbl0063.04107MR0011537
- Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
- Nakai, E., 10.1002/mana.19941660108, Math. Nachr. 166 (1994), 95-103. (1994) Zbl0837.42008MR1273325DOI10.1002/mana.19941660108
- Nakai, E., 10.4064/sm176-1-1, Stud. Math. 176 (2006), 1-19. (2006) Zbl1121.46031MR2263959DOI10.4064/sm176-1-1
- Nakai, E., 10.1007/s11425-017-9154-y, Sci. China, Math. 60 (2017), 2219-2240. (2017) Zbl1395.42054MR3714573DOI10.1007/s11425-017-9154-y
- Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) Zbl0175.42602MR0241965DOI10.1016/0022-1236(69)90022-6
- Shen, Z., 10.1353/ajm.2003.0035, Am. J. Math. 125 (2003), 1079-1115. (2003) Zbl1046.35029MR2004429DOI10.1353/ajm.2003.0035
- Song, L., Tian, X. X., Yan, L. X., 10.1007/s10114-018-7368-3, Acta Math. Sin., Engl. Ser. 34 (2018), 787-800. (2018) Zbl1388.42073MR3773821DOI10.1007/s10114-018-7368-3
- Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972
- Sturm, K. T., Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., IX. Sér. 75 (1996), 273-297. (1996) Zbl0854.35016MR1387522
- Wang, D., 10.21136/CMJ.2019.0590-17, Czech. Math. J. 69 (2019), 1029-1037. (2019) Zbl1513.42067MR4039617DOI10.21136/CMJ.2019.0590-17
- Wang, Y., Xiao, J., 10.1016/j.acha.2014.09.002, Appl. Comput. Harmon. Anal. 39 (2015), 214-247. (2015) Zbl1320.31016MR3352014DOI10.1016/j.acha.2014.09.002
- Yan, L., Yang, D., 10.1007/s00209-006-0017-z, Math. Z. 255 (2007), 133-159. (2007) Zbl1143.42026MR2262725DOI10.1007/s00209-006-0017-z
- Yang, D., Yang, D., Zhou, Y., 10.1215/00277630-2009-008, Nagoya Math. J. 198 (2010), 77-119. (2010) Zbl1214.46019MR2666578DOI10.1215/00277630-2009-008
- Yang, M., Zhang, C., 10.1002/mana.201900213, Math. Nachr. 294 (2021), 2021-2044. (2021) Zbl07750816MR4371281DOI10.1002/mana.201900213
- Yuan, W., Sickel, W., Yang, D., 10.1007/s11425-015-5047-8, Sci. China, Math. 58 (2015), 1835-1908. (2015) Zbl1337.46030MR3383989DOI10.1007/s11425-015-5047-8
- Zorko, C. T., 10.1090/S0002-9939-1986-0861756-X, Proc. Am. Math. Soc. 98 (1986), 586-592. (1986) Zbl0612.43003MR0861756DOI10.1090/S0002-9939-1986-0861756-X
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.