On the characterization of harmonic functions with initial data in Morrey space

Bo Li; Jinxia Li; Bolin Ma; Tianjun Shen

Czechoslovak Mathematical Journal (2024)

  • Volume: 74, Issue: 2, page 461-491
  • ISSN: 0011-4642

Abstract

top
Let ( X , d , μ ) be a metric measure space satisfying the doubling condition and an L 2 -Poincaré inequality. Consider the nonnegative operator generalized by a Dirichlet form on X . We will show that a solution u to ( - t 2 + ) u = 0 on X × + satisfies an α -Carleson condition if and only if u can be represented as the Poisson integral of the operator with the trace in the generalized Morrey space L 2 , α ( X ) , where α is a nonnegative function defined on a class of balls in X . This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.

How to cite

top

Li, Bo, et al. "On the characterization of harmonic functions with initial data in Morrey space." Czechoslovak Mathematical Journal 74.2 (2024): 461-491. <http://eudml.org/doc/299369>.

@article{Li2024,
abstract = {Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^\{2\}$-Poincaré inequality. Consider the nonnegative operator $\mathcal \{L\}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal \{L\})u=0$ on $X\times \mathbb \{R\}_+$ satisfies an $\alpha $-Carleson condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal \{L\}$ with the trace in the generalized Morrey space $L^\{2,\alpha \}(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.},
author = {Li, Bo, Li, Jinxia, Ma, Bolin, Shen, Tianjun},
journal = {Czechoslovak Mathematical Journal},
keywords = {harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space},
language = {eng},
number = {2},
pages = {461-491},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the characterization of harmonic functions with initial data in Morrey space},
url = {http://eudml.org/doc/299369},
volume = {74},
year = {2024},
}

TY - JOUR
AU - Li, Bo
AU - Li, Jinxia
AU - Ma, Bolin
AU - Shen, Tianjun
TI - On the characterization of harmonic functions with initial data in Morrey space
JO - Czechoslovak Mathematical Journal
PY - 2024
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 74
IS - 2
SP - 461
EP - 491
AB - Let $(X,d,\mu )$ be a metric measure space satisfying the doubling condition and an $L^{2}$-Poincaré inequality. Consider the nonnegative operator $\mathcal {L}$ generalized by a Dirichlet form on $X$. We will show that a solution $u$ to $(-\partial ^2_t+\mathcal {L})u=0$ on $X\times \mathbb {R}_+$ satisfies an $\alpha $-Carleson condition if and only if $u$ can be represented as the Poisson integral of the operator $\mathcal {L}$ with the trace in the generalized Morrey space $L^{2,\alpha }(X)$, where $\alpha $ is a nonnegative function defined on a class of balls in $X$. This result extends the analogous characterization founded by R. Jiang, J. Xiao, D. Yang (2016) from the classical Morrey space on Euclidean space to the generalized Morrey space on the metric measure space.
LA - eng
KW - harmonic function; Dirichlet problem; Morrey space; Carleson measure; metric measure space
UR - http://eudml.org/doc/299369
ER -

References

top
  1. Adams, D. R., 10.1007/978-3-319-26681-7, Applied and Numerical Harmonic Analysis. Birkhäuser, Cham (2015). (2015) Zbl1339.42001MR3467116DOI10.1007/978-3-319-26681-7
  2. Adams, D. R., Xiao, J., 10.1007/s11512-010-0134-0, Ark. Mat. 50 (2012), 201-230. (2012) Zbl1254.31009MR2961318DOI10.1007/s11512-010-0134-0
  3. Akbulut, A., Guliyev, V. S., Noi, T., Sawano, Y., 10.4171/ZAA/1577, Z. Anal. Anwend. 36 (2017), 17-35. (2017) Zbl1362.42022MR3638966DOI10.4171/ZAA/1577
  4. Biroli, M., Mosco, U., 10.1007/BF01759352, Ann. Mat. Pura Appl., IV. Ser. 169 (1995), 125-181. (1995) Zbl0851.31008MR1378473DOI10.1007/BF01759352
  5. Björn, A., Björn, J., 10.4171/099, EMS Tracts in Mathematics 17. EMS, Zürich (2011). (2011) Zbl1231.31001MR2867756DOI10.4171/099
  6. Campanato, S., Proprietà di una famiglia di spazi funzionali, Ann. Sc. Norm. Super. Pisa, Sci. Fis. Mat., III. Ser. 18 (1964), 137-160 Italian. (1964) Zbl0133.06801MR0167862
  7. Chiarenza, F., Frasca, M., Morrey spaces and Hardy-Littlewood maximal function, Rend. Mat. Appl., VII. Ser. 7 (1987), 273-279. (1987) Zbl0717.42023MR0985999
  8. Coulhon, T., Jiang, R., Koskela, P., Sikora, A., 10.1016/j.jfa.2019.108398, J. Funct. Anal. 278 (2020), Article ID 108398, 67 pages. (2020) Zbl1439.53041MR4056992DOI10.1016/j.jfa.2019.108398
  9. Cruz-Uribe, D. V., Fiorenza, A., 10.1007/978-3-0348-0548-3, Applied and Numerical Harmonic Analysis. Birkhäuser, Heidelberg (2013). (2013) Zbl1268.46002MR3026953DOI10.1007/978-3-0348-0548-3
  10. Duong, X. T., Xiao, J., Yan, L., 10.1007/s00041-006-6057-2, J. Fourier Anal. Appl. 13 (2007), 87-111. (2007) Zbl1133.42017MR2296729DOI10.1007/s00041-006-6057-2
  11. Duong, X. T., Yan, L., 10.1090/S0894-0347-05-00496-0, J. Am. Math. Soc. 18 (2005), 943-973. (2005) Zbl1078.42013MR2163867DOI10.1090/S0894-0347-05-00496-0
  12. Duong, X. T., Yan, L., Zhang, C., 10.1016/j.jfa.2013.09.008, J. Funct. Anal. 266 (2014), 2053-2085. (2014) Zbl1292.35099MR3150151DOI10.1016/j.jfa.2013.09.008
  13. Eriksson-Bique, S., Giovannardi, G., Korte, R., Shanmugalingam, N., Speight, G., 10.1016/j.jde.2021.10.029, J. Differ. Equations 306 (2022), 590-632. (2022) Zbl1477.30056MR4337822DOI10.1016/j.jde.2021.10.029
  14. Fabes, E. B., Johnson, R. L., Neri, U., 10.1512/iumj.1976.25.25012, Indiana Univ. Math. J. 25 (1976), 159-170. (1976) Zbl0306.46032MR0394172DOI10.1512/iumj.1976.25.25012
  15. Fabes, E. B., Kenig, C. E., Serapioni, R. P., 10.1080/03605308208820218, Commun. Partial Differ. Equations 7 (1982), 77-116. (1982) Zbl0498.35042MR0643158DOI10.1080/03605308208820218
  16. Fabes, E. B., Neri, U., 10.1215/S0012-7094-75-04260-X, Duke Math. J. 42 (1975), 725-734. (1975) Zbl0331.35032MR0397163DOI10.1215/S0012-7094-75-04260-X
  17. Fabes, E. B., Neri, U., 10.1090/S0002-9939-1980-0548079-8, Proc. Am. Math. Soc. 78 (1980), 33-39. (1980) Zbl0455.31004MR0548079DOI10.1090/S0002-9939-1980-0548079-8
  18. Fefferman, C. L., Stein, E. M., 10.1007/BF02392215, Acta Math. 129 (1972), 137-193. (1972) Zbl0257.46078MR0447953DOI10.1007/BF02392215
  19. Fukushima, M., Oshima, Y., Takeda, M., 10.1515/9783110889741, de Gruyter Studies in Mathematics 19. Walter de Gruyter, Berlin (1994). (1994) Zbl0838.31001MR1303354DOI10.1515/9783110889741
  20. Haj{ł}asz, P., 10.1007/BF00275475, Potential Anal. 5 (1996), 403-415. (1996) Zbl0859.46022MR1401074DOI10.1007/BF00275475
  21. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T., 10.1017/CBO9781316135914, New Mathematical Monographs 27. Cambridge University Press, Cambridge (2015). (2015) Zbl1332.46001MR3363168DOI10.1017/CBO9781316135914
  22. Huang, J., Li, P., Liu, Y., 10.1007/s43034-019-00005-4, Ann. Funct. Anal. 11 (2020), 314-333. (2020) Zbl1453.46029MR4091418DOI10.1007/s43034-019-00005-4
  23. Huang, Q., Zhang, C., 10.11650/tjm/181106, Taiwanese J. Math. 23 (2019), 1133-1151. (2019) Zbl1426.42020MR4012373DOI10.11650/tjm/181106
  24. Jiang, R., 10.1016/j.jfa.2011.08.011, J. Funct. Anal. 261 (2011), 3549-3584. (2011) Zbl1255.58008MR2838034DOI10.1016/j.jfa.2011.08.011
  25. Jiang, R., Li, B., 10.1007/s11425-020-1834-1, Sci. China, Math. 65 (2022), 1431-1468. (2022) Zbl1497.30020MR4444237DOI10.1007/s11425-020-1834-1
  26. Jiang, R., Lin, F., 10.1016/j.matpur.2019.02.009, J. Math. Pures Appl. (9) 133 (2020), 39-65. (2020) Zbl1433.58023MR4044674DOI10.1016/j.matpur.2019.02.009
  27. Jiang, R., Xiao, J., Yang, D., 10.1142/S0219530515500190, Anal. Appl., Singap. 14 (2016), 679-703. (2016) Zbl1366.46022MR3530272DOI10.1142/S0219530515500190
  28. Jin, Y., Li, B., Shen, T., 10.1007/s40840-023-01603-1, Bull. Malays. Math. Sci. Soc. (2) 47 (2024), Paper No. 12, 33 pages. (2024) Zbl7785602MR4670561DOI10.1007/s40840-023-01603-1
  29. Kalita, E. A., Dual Morrey spaces, Dokl. Math. 58 (1998), 85-87 translation from Dokl. Akad. Nauk, Ross. Akad. Nauk 361 1998 447-449. (1998) Zbl1011.46032MR1693091
  30. Keith, S., Zhong, X., 10.4007/annals.2008.167.575, Ann. Math. (2) 167 (2008), 575-599. (2008) Zbl1180.46025MR2415381DOI10.4007/annals.2008.167.575
  31. Koskela, P., Yang, D., Zhou, Y., 10.1016/j.jfa.2009.11.004, J. Funct. Anal. 258 (2010), 2637-2661. (2010) Zbl1195.46034MR2593336DOI10.1016/j.jfa.2009.11.004
  32. Koskela, P., Yang, D., Zhou, Y., 10.1016/j.aim.2010.10.020, Adv. Math. 226 (2011), 3579-3621. (2011) Zbl1217.46019MR2764899DOI10.1016/j.aim.2010.10.020
  33. Li, B., Li, J., Lin, Q., Ma, B., Shen, T., 10.1017/prm.2023.58, (to appear) in Proc. R. Soc. Edinb., Sect. A, Math. DOI10.1017/prm.2023.58
  34. Li, B., Ma, B., Shen, T., Wu, X., Zhang, C., 10.1007/s12220-023-01245-6, J. Geom. Anal. 33 (2023), Article ID 215, 42 pages. (2023) Zbl1514.35255MR4581154DOI10.1007/s12220-023-01245-6
  35. Li, B., Shen, T., Tan, J., Wang, A., 10.1007/s13324-023-00834-6, Anal. Math. Phys. 13 (2023), Article ID 85, 31 pages. (2023) Zbl07768300MR4654920DOI10.1007/s13324-023-00834-6
  36. Li, H-Q., 10.1006/jfan.1998.3347, J. Funct. Anal. 161 (1999), 152-218 French. (1999) Zbl0929.22005MR1670222DOI10.1006/jfan.1998.3347
  37. Lin, C.-C., Liu, H., 10.1016/j.aim.2011.06.024, Adv. Math. 228 (2011), 1631-1688. (2011) Zbl1235.22012MR2824565DOI10.1016/j.aim.2011.06.024
  38. Liu, Y., Yuan, W., 10.21136/CMJ.2017.0081-16, Czech. Math. J. 67 (2017), 715-732. (2017) Zbl1464.46020MR3697911DOI10.21136/CMJ.2017.0081-16
  39. Martell, J. M., Mitrea, D., Mitrea, I., Mitrea, M., 10.2140/apde.2019.12.605, Anal. PDE 12 (2019), 605-720. (2019) Zbl1408.35029MR3864207DOI10.2140/apde.2019.12.605
  40. Mizuhara, T., 10.1007/978-4-431-68168-7_16, Harmonic Analysis ICM-90 Satellite Conference Proceedings. Springer, Tokyo (1991), 183-189. (1991) Zbl0771.42007MR1261439DOI10.1007/978-4-431-68168-7_16
  41. C. B. Morrey, Jr., Multiple integral problems in the calculus of variations and related topics, Univ. California Publ. Math. (N.S.) 1 (1943), 1-130. (1943) Zbl0063.04107MR0011537
  42. Muckenhoupt, B., 10.1090/S0002-9947-1972-0293384-6, Trans. Am. Math. Soc. 165 (1972), 207-226. (1972) Zbl0236.26016MR0293384DOI10.1090/S0002-9947-1972-0293384-6
  43. Nakai, E., 10.1002/mana.19941660108, Math. Nachr. 166 (1994), 95-103. (1994) Zbl0837.42008MR1273325DOI10.1002/mana.19941660108
  44. Nakai, E., 10.4064/sm176-1-1, Stud. Math. 176 (2006), 1-19. (2006) Zbl1121.46031MR2263959DOI10.4064/sm176-1-1
  45. Nakai, E., 10.1007/s11425-017-9154-y, Sci. China, Math. 60 (2017), 2219-2240. (2017) Zbl1395.42054MR3714573DOI10.1007/s11425-017-9154-y
  46. Peetre, J., 10.1016/0022-1236(69)90022-6, J. Funct. Anal. 4 (1969), 71-87. (1969) Zbl0175.42602MR0241965DOI10.1016/0022-1236(69)90022-6
  47. Shen, Z., 10.1353/ajm.2003.0035, Am. J. Math. 125 (2003), 1079-1115. (2003) Zbl1046.35029MR2004429DOI10.1353/ajm.2003.0035
  48. Song, L., Tian, X. X., Yan, L. X., 10.1007/s10114-018-7368-3, Acta Math. Sin., Engl. Ser. 34 (2018), 787-800. (2018) Zbl1388.42073MR3773821DOI10.1007/s10114-018-7368-3
  49. Stein, E. M., Weiss, G., Introduction to Fourier Analysis on Euclidean Spaces, Princeton Mathematical Series 32. Princeton University Press, Princeton (1971). (1971) Zbl0232.42007MR0304972
  50. Sturm, K. T., Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality, J. Math. Pures Appl., IX. Sér. 75 (1996), 273-297. (1996) Zbl0854.35016MR1387522
  51. Wang, D., 10.21136/CMJ.2019.0590-17, Czech. Math. J. 69 (2019), 1029-1037. (2019) Zbl1513.42067MR4039617DOI10.21136/CMJ.2019.0590-17
  52. Wang, Y., Xiao, J., 10.1016/j.acha.2014.09.002, Appl. Comput. Harmon. Anal. 39 (2015), 214-247. (2015) Zbl1320.31016MR3352014DOI10.1016/j.acha.2014.09.002
  53. Yan, L., Yang, D., 10.1007/s00209-006-0017-z, Math. Z. 255 (2007), 133-159. (2007) Zbl1143.42026MR2262725DOI10.1007/s00209-006-0017-z
  54. Yang, D., Yang, D., Zhou, Y., 10.1215/00277630-2009-008, Nagoya Math. J. 198 (2010), 77-119. (2010) Zbl1214.46019MR2666578DOI10.1215/00277630-2009-008
  55. Yang, M., Zhang, C., 10.1002/mana.201900213, Math. Nachr. 294 (2021), 2021-2044. (2021) Zbl07750816MR4371281DOI10.1002/mana.201900213
  56. Yuan, W., Sickel, W., Yang, D., 10.1007/s11425-015-5047-8, Sci. China, Math. 58 (2015), 1835-1908. (2015) Zbl1337.46030MR3383989DOI10.1007/s11425-015-5047-8
  57. Zorko, C. T., 10.1090/S0002-9939-1986-0861756-X, Proc. Am. Math. Soc. 98 (1986), 586-592. (1986) Zbl0612.43003MR0861756DOI10.1090/S0002-9939-1986-0861756-X

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.