Cofiniteness and finiteness of local cohomology modules over regular local rings
Czechoslovak Mathematical Journal (2017)
- Volume: 67, Issue: 3, page 733-740
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topA'zami, Jafar, and Pourreza, Naser. "Cofiniteness and finiteness of local cohomology modules over regular local rings." Czechoslovak Mathematical Journal 67.3 (2017): 733-740. <http://eudml.org/doc/294087>.
@article{Azami2017,
abstract = {Let $(R,\mathfrak \{m\})$ be a commutative Noetherian regular local ring of dimension $d$ and $I$ be a proper ideal of $R$ such that $\{\rm mAss\}_R(R/I)=\{\rm Assh\}_R(I)$. It is shown that the $R$-module $H^\{\{\rm ht\}(I)\}_I(R)$ is $I$-cofinite if and only if $\{\rm cd\}(I,R)=\{\rm ht\}(I)$. Also we present a sufficient condition under which this condition the $R$-module $H^i_I(R)$ is finitely generated if and only if it vanishes.},
author = {A'zami, Jafar, Pourreza, Naser},
journal = {Czechoslovak Mathematical Journal},
keywords = {cofinite module; Cohen-Macaulay ring; Krull dimension; local cohomology; regular ring},
language = {eng},
number = {3},
pages = {733-740},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Cofiniteness and finiteness of local cohomology modules over regular local rings},
url = {http://eudml.org/doc/294087},
volume = {67},
year = {2017},
}
TY - JOUR
AU - A'zami, Jafar
AU - Pourreza, Naser
TI - Cofiniteness and finiteness of local cohomology modules over regular local rings
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 733
EP - 740
AB - Let $(R,\mathfrak {m})$ be a commutative Noetherian regular local ring of dimension $d$ and $I$ be a proper ideal of $R$ such that ${\rm mAss}_R(R/I)={\rm Assh}_R(I)$. It is shown that the $R$-module $H^{{\rm ht}(I)}_I(R)$ is $I$-cofinite if and only if ${\rm cd}(I,R)={\rm ht}(I)$. Also we present a sufficient condition under which this condition the $R$-module $H^i_I(R)$ is finitely generated if and only if it vanishes.
LA - eng
KW - cofinite module; Cohen-Macaulay ring; Krull dimension; local cohomology; regular ring
UR - http://eudml.org/doc/294087
ER -
References
top- Bagheriyeh, I., Bahmanpour, K., A'zami, J., 10.1216/JCA-2014-6-3-305, J. Commut. Algebra 6 (2014), 305-321. (2014) Zbl1299.13019MR3278806DOI10.1216/JCA-2014-6-3-305
- Bahmanpour, K., 10.1080/00927872.2014.900687, Commun. Algebra 43 (2015), 2509-2515. (2015) Zbl1323.13003MR3344203DOI10.1080/00927872.2014.900687
- Bahmanpour, K., A'zami, J., Ghasemi, G., 10.1016/j.jalgebra.2012.03.026, J. Algebra 363 (2012), 8-13. (2012) Zbl1262.13027MR2925842DOI10.1016/j.jalgebra.2012.03.026
- Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.05.014, J. Algebra 320 (2008), 2632-2641. (2008) Zbl1149.13008MR2441778DOI10.1016/j.jalgebra.2008.05.014
- Bahmanpour, K., Naghipour, R., 10.1016/j.jalgebra.2008.12.020, J. Algebra 321 (2009), 1997-2011. (2009) Zbl1168.13016MR2494753DOI10.1016/j.jalgebra.2008.12.020
- Brodmann, M. P., Sharp, R. Y., 10.1017/CBO9780511629204, Cambridge Studies in Advanced Mathematics 60, Cambridge University Press, Cambridge (1998). (1998) Zbl0903.13006MR1613627DOI10.1017/CBO9780511629204
- Grothendieck, A., Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz loceaux et globeaux (SGA 2), Séminaire de Géométrie Algébrique du Bois-Marie, 1962, Advanced Studies in Pure Mathematics 2, North-Holland Publishing Company, Amsterdam; Masson & Cie, Éditeur, Paris (1968), French. (1968) Zbl0197.47202MR0476737
- Hartshorne, R., 10.1007/BF01404554, Invent. Math. 9 (1970), 145-164. (1970) Zbl0196.24301MR0257096DOI10.1007/BF01404554
- Hellus, M., 10.1006/jabr.2000.8580, J. Algebra 237 (2001), 406-419. (2001) Zbl1027.13009MR1813886DOI10.1006/jabr.2000.8580
- Huneke, C., Koh, J., 10.1017/S0305004100070493, Math. Proc. Camb. Philos. Soc. 110 (1991), 421-429. (1991) Zbl0749.13007MR1120477DOI10.1017/S0305004100070493
- Khashyarmanesh, K., 10.1090/S0002-9939-06-08664-3, Proc. Am. Math. Soc. 135 (2007), 1319-1327. (2007) Zbl1111.13016MR2276640DOI10.1090/S0002-9939-06-08664-3
- Khashyarmanesh, K., Salarian, Sh., 10.1080/00927879808826293, Commun. Algebra 26 (1998), 2483-2490. (1998) Zbl0909.13007MR1627876DOI10.1080/00927879808826293
- Melkersson, L., 10.1016/j.jalgebra.2004.08.037, J. Algebra 285 (2005), 649-668. (2005) Zbl1093.13012MR2125457DOI10.1016/j.jalgebra.2004.08.037
- Schenzel, P., 10.7146/math.scand.a-14399, Math. Scand. 92 (2003), 161-180. (2003) Zbl1023.13011MR1973941DOI10.7146/math.scand.a-14399
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.