Positive solutions of critical quasilinear elliptic equations in R N

Paul A. Binding; Pavel Drábek; Yin Xi Huang

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 149-166
  • ISSN: 0862-7959

Abstract

top
We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in N , where λ , α , 1 < p < N , p * = N p / ( N - p ) , the critical Sobolev exponent, and 1 < q < p * , q p . Let λ 1 + > 0 be the principal eigenvalue of -pu=g(x)|u|p-2u    in ,        g(x)|u|p>0, (2) with u 1 + > 0 the associated eigenfunction. We prove that, if N f | u 1 + | p * < 0 , N h | u 1 + | q > 0 if 1 < q < p and N h | u 1 + | q < 0 if p < q < p * , then there exist λ * > λ 1 + and α * > 0 , such that for λ [ λ 1 + , λ * ) and α [ 0 , α * ) , (1) has at least one positive solution.

How to cite

top

Binding, Paul A., Drábek, Pavel, and Huang, Yin Xi. "Positive solutions of critical quasilinear elliptic equations in $R ^N$." Mathematica Bohemica 124.2-3 (1999): 149-166. <http://eudml.org/doc/248458>.

@article{Binding1999,
abstract = {We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in $\mathbb \{R\}^N$, where $\lambda , \alpha \in \mathbb \{R\}$, $1<p<N$, $p^*=Np/(N-p)$, the critical Sobolev exponent, and $1<q<p^*$, $q\ne p$. Let $\lambda _1^+>0$ be the principal eigenvalue of -pu=g(x)|u|p-2u    in ,        g(x)|u|p>0, (2) with $u_1^+>0$ the associated eigenfunction. We prove that, if $\int _\{\mathbb \{R\}^N\}f|u_1^+|^\{p^*\}<0$, $\int _\{\mathbb \{R\}^N\}h|u_1^+|^q>0$ if $1<q<p$ and $\int _\{\mathbb \{R\}^N\}h|u_1^+|^q<0$ if $p<q<p^*$, then there exist $\lambda ^*>\lambda _1^+$ and $\alpha ^*>0$, such that for $\lambda \in [\lambda _1^+, \lambda ^*)$ and $\alpha \in [0, \alpha ^*)$, (1) has at least one positive solution.},
author = {Binding, Paul A., Drábek, Pavel, Huang, Yin Xi},
journal = {Mathematica Bohemica},
keywords = {positive solutions; critical exponent; the $p$-Laplacian; -Laplacian; positive solutions; critical exponent},
language = {eng},
number = {2-3},
pages = {149-166},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Positive solutions of critical quasilinear elliptic equations in $R ^N$},
url = {http://eudml.org/doc/248458},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Binding, Paul A.
AU - Drábek, Pavel
AU - Huang, Yin Xi
TI - Positive solutions of critical quasilinear elliptic equations in $R ^N$
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 149
EP - 166
AB - We consider the existence of positive solutions of -pu=g(x)|u|p-2u+h(x)|u|q-2u+f(x)|u|p*-2u(1) in $\mathbb {R}^N$, where $\lambda , \alpha \in \mathbb {R}$, $1<p<N$, $p^*=Np/(N-p)$, the critical Sobolev exponent, and $1<q<p^*$, $q\ne p$. Let $\lambda _1^+>0$ be the principal eigenvalue of -pu=g(x)|u|p-2u    in ,        g(x)|u|p>0, (2) with $u_1^+>0$ the associated eigenfunction. We prove that, if $\int _{\mathbb {R}^N}f|u_1^+|^{p^*}<0$, $\int _{\mathbb {R}^N}h|u_1^+|^q>0$ if $1<q<p$ and $\int _{\mathbb {R}^N}h|u_1^+|^q<0$ if $p<q<p^*$, then there exist $\lambda ^*>\lambda _1^+$ and $\alpha ^*>0$, such that for $\lambda \in [\lambda _1^+, \lambda ^*)$ and $\alpha \in [0, \alpha ^*)$, (1) has at least one positive solution.
LA - eng
KW - positive solutions; critical exponent; the $p$-Laplacian; -Laplacian; positive solutions; critical exponent
UR - http://eudml.org/doc/248458
ER -

References

top
  1. C. O. Alves, Multiple positive solutions for equations involving critical Sobolev exponent in R N , Electron. J.Differential Equations 13 (1997), 1-10. (1997) MR1461975
  2. C. O. Alves J. V. Gonçalves O. H. Miyagaki, Remarks on multiplicity of positive solutions for nonlinear elliptic equations in R N with critical growth, Preprint. MR1720590
  3. H. Brezis L. Nirenberg, 10.1002/cpa.3160360405, Comm. Pure Appl. Math. 36 (1983), 437-477. (1983) MR0709644DOI10.1002/cpa.3160360405
  4. P. Drábek Y. X. Huang, Multiple positive solutions of quasilinear elliptic equations in R N , Nonlinear Anal. To appear. MR1691021
  5. P. Drábek Y. X. Huang, 10.1006/jdeq.1997.3306, J. Differential Equations 140 (1997), 106-132. (1997) MR1473856DOI10.1006/jdeq.1997.3306
  6. P. Drábek Y. X. Huang, 10.1090/S0002-9947-97-01788-1, Trans. Amer. Math. Soc. 349 (1997), 171-188. (1997) MR1390979DOI10.1090/S0002-9947-97-01788-1
  7. J. V. Gonçalves C. O. Alves, Existence of positive solutions for m-Laplacian equations in R N involving critical Sobolev exponents, Nonlinear Anal. 32 (1998), 53-70. (1998) MR1491613
  8. P. L. Lions, The concentration-compactness principle in the calculus of variations, the limit case, Part I, II, Rev. Mat. Iberoamericana 1 (1985), no. 2, 3, 109-145, 45-121. (1985) MR0850686
  9. J. Mawhin M. Willem, 10.1007/978-1-4757-2061-7, Appl. Math. Sci. Vol. 74, Springer-Verlag, New York, 1989. (1989) MR0982267DOI10.1007/978-1-4757-2061-7
  10. E. S. Noussair C. A. Swanson, 10.1006/jmaa.1995.1355, J. Math. Anal. Appl. 195 (1995), 278-293. (195) MR1352823DOI10.1006/jmaa.1995.1355
  11. E. S. Noussair C. A. Swanson J. Yang, 10.1016/0362-546X(93)90164-N, Nonlinear Anal. 20 (1993), 285-301. (1993) MR1202205DOI10.1016/0362-546X(93)90164-N
  12. C. A. Swanson L. S. Yu, 10.1007/BF01759355, Ann. Mat. Pura Appl. 169 (1995), 233-250. (1995) MR1378476DOI10.1007/BF01759355
  13. G. Tarantello, 10.1016/S0294-1449(16)30238-4, Ann. Inst. H. Poincaré Anal. Non Linéaire 9 (1992), 281-304. (1992) MR1168304DOI10.1016/S0294-1449(16)30238-4
  14. J. Yang, 10.1016/0362-546X(94)00247-F, Nonlinear Anal. 25 (1995), 1283-1306. (1995) Zbl0838.49008MR1355723DOI10.1016/0362-546X(94)00247-F

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.