Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems
Ahmed Ahmed; Taghi Ahmedatt; Hassane Hjiaj; Abdelfattah Touzani
Mathematica Bohemica (2017)
- Volume: 142, Issue: 3, page 243-262
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topAhmed, Ahmed, et al. "Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems." Mathematica Bohemica 142.3 (2017): 243-262. <http://eudml.org/doc/294102>.
@article{Ahmed2017,
abstract = {We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin \{cases\} -\displaystyle \sum \_\{i=1\}^\{N\}\frac \{\partial \}\{\partial x\_\{i\}\}a\_\{i\}\Big (x,\frac \{\partial u\}\{\partial x\_\{i\}\}\Big ) + b(x)|u|^\{p\_\{0\}(x)-2\}u = f(x,u)+ g(x,u) &\text \{in\} \ \Omega , \\ \quad \dfrac \{\partial u\}\{\partial \gamma \} = 0 &\text \{on\} \ \partial \Omega . \end \{cases\} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples.},
author = {Ahmed, Ahmed, Ahmedatt, Taghi, Hjiaj, Hassane, Touzani, Abdelfattah},
journal = {Mathematica Bohemica},
language = {eng},
number = {3},
pages = {243-262},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence of infinitely many weak solutions for some quasilinear $\vec \{p\}(x)$-elliptic Neumann problems},
url = {http://eudml.org/doc/294102},
volume = {142},
year = {2017},
}
TY - JOUR
AU - Ahmed, Ahmed
AU - Ahmedatt, Taghi
AU - Hjiaj, Hassane
AU - Touzani, Abdelfattah
TI - Existence of infinitely many weak solutions for some quasilinear $\vec {p}(x)$-elliptic Neumann problems
JO - Mathematica Bohemica
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 142
IS - 3
SP - 243
EP - 262
AB - We consider the following quasilinear Neumann boundary-value problem of the type $$ \begin {cases} -\displaystyle \sum _{i=1}^{N}\frac {\partial }{\partial x_{i}}a_{i}\Big (x,\frac {\partial u}{\partial x_{i}}\Big ) + b(x)|u|^{p_{0}(x)-2}u = f(x,u)+ g(x,u) &\text {in} \ \Omega , \\ \quad \dfrac {\partial u}{\partial \gamma } = 0 &\text {on} \ \partial \Omega . \end {cases} $$ We prove the existence of infinitely many weak solutions for our equation in the anisotropic variable exponent Sobolev spaces and we give some examples.
LA - eng
UR - http://eudml.org/doc/294102
ER -
References
top- Anello, G., Cordaro, G., 10.1007/s00013-002-8314-1, Arch. Math. 79 (2002), 274-287. (2002) Zbl1091.35025MR1944952DOI10.1007/s00013-002-8314-1
- Azroul, E., Barbara, A., Benboubker, M. B., Hjiaj, H., 10.4064/am41-2-3, Appl. Math. 41 (2014), 149-163. (2014) Zbl1316.35107MR3281367DOI10.4064/am41-2-3
- Bendahmane, M., Chrif, M., Manouni, S. El, 10.4171/ZAA/1438, Z. Anal. Anwend. 30 (2011), 341-353. (2011) Zbl1231.35065MR2819499DOI10.4171/ZAA/1438
- Boureanu, M.-M., Rădulescu, V. D., 10.1016/j.na.2011.09.033, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 75 (2012), 4471-4482. (2012) Zbl1262.35090MR2927115DOI10.1016/j.na.2011.09.033
- Nardo, R. Di, Feo, F., Guibé, O., Uniqueness result for nonlinear anisotropic elliptic equations, Adv. Differ. Equ. 18 (2013), 433-458. (2013) Zbl1272.35092MR3086461
- Diening, L., Harjulehto, P., Hästö, P., Růžička, M., 10.1007/978-3-642-18363-8, Lecture Notes in Mathematics 2017. Springer, Berlin (2011). (2011) Zbl1222.46002MR2790542DOI10.1007/978-3-642-18363-8
- Fan, X., Ji, C., 10.1016/j.jmaa.2006.12.055, J. Math. Anal. Appl. 334 (2007), 248-260. (2007) Zbl1157.35040MR2332553DOI10.1016/j.jmaa.2006.12.055
- Guibé, O., Uniqueness of the renormalized solution to a class of nonlinear elliptic equations, On the Notions of Solution to Nonlinear Elliptic Problems: Results and Developments (A. Alvino et al., eds.) Quaderni di Matematica 23. Caserta (2008), 255-282. (2008) Zbl1216.35036MR2762168
- Harjulehto, P., Hästö, P., 10.5565/PUBLMAT_52208_05, Publ. Mat., Barc. 52 (2008), 347-363. (2008) Zbl1163.46022MR2436729DOI10.5565/PUBLMAT_52208_05
- Kone, B., Ouaro, S., Traore, S., Weak solutions for anisotropic nonlinear elliptic equations with variable exponents, Electron. J. Differ. Equ. (electronic only) 2009 (2009), paper No. 144, 11 pages. (2009) Zbl1182.35092MR2565886
- Kováčik, O., Rákosník, J., On spaces $L^{p(x)}$ and $W^{k,p(x)}$, Czech. Math. J. 41 (1991), 592-618. (1991) Zbl0784.46029MR1134951
- Mihăilescu, M., Moroşanu, G., 10.1080/00036810802713826, Appl. Anal. 89 (2010), 257-271. (2010) Zbl1187.35074MR2598814DOI10.1080/00036810802713826
- Ricceri, B., 10.1016/S0377-0427(99)00269-1, J. Comput. Appl. Math. 113 (2000), 401-410. (2000) Zbl0946.49001MR1735837DOI10.1016/S0377-0427(99)00269-1
- užička, M. R\accent23, 10.1007/BFb0104029, Lecture Notes in Mathematics 1748. Springer, Berlin (2000). (2000) Zbl0962.76001MR1810360DOI10.1007/BFb0104029
- Zhao, L., Zhao, P., Xie, X., Existence and multiplicity of solutions for divergence type elliptic equations, Electron. J. Differ. Equ. (electronic only) 2011 (2011), paper No. 43, 9 pages. (2011) Zbl1213.35227MR2788662
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.