Property of being semi-Kelley for the cartesian products and hyperspaces

Enrique Castañeda-Alvarado; Ivon Vidal-Escobar

Commentationes Mathematicae Universitatis Carolinae (2017)

  • Volume: 58, Issue: 3, page 359-369
  • ISSN: 0010-2628

Abstract

top
In this paper we construct a Kelley continuum X such that X × [ 0 , 1 ] is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace C ( X ) is not semi- Kelley. Further we show that small Whitney levels in C ( X ) are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.

How to cite

top

Castañeda-Alvarado, Enrique, and Vidal-Escobar, Ivon. "Property of being semi-Kelley for the cartesian products and hyperspaces." Commentationes Mathematicae Universitatis Carolinae 58.3 (2017): 359-369. <http://eudml.org/doc/294130>.

@article{Castañeda2017,
abstract = {In this paper we construct a Kelley continuum $X$ such that $X\times [0,1]$ is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace $C(X)$ is not semi- Kelley. Further we show that small Whitney levels in $C(X)$ are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.},
author = {Castañeda-Alvarado, Enrique, Vidal-Escobar, Ivon},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {continuum; property of Kelley; semi-Kelley; cartesian products; hyperspaces; Whitney levels},
language = {eng},
number = {3},
pages = {359-369},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Property of being semi-Kelley for the cartesian products and hyperspaces},
url = {http://eudml.org/doc/294130},
volume = {58},
year = {2017},
}

TY - JOUR
AU - Castañeda-Alvarado, Enrique
AU - Vidal-Escobar, Ivon
TI - Property of being semi-Kelley for the cartesian products and hyperspaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2017
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 58
IS - 3
SP - 359
EP - 369
AB - In this paper we construct a Kelley continuum $X$ such that $X\times [0,1]$ is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. In addition, we show that the hyperspace $C(X)$ is not semi- Kelley. Further we show that small Whitney levels in $C(X)$ are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013.
LA - eng
KW - continuum; property of Kelley; semi-Kelley; cartesian products; hyperspaces; Whitney levels
UR - http://eudml.org/doc/294130
ER -

References

top
  1. Calderón-Camacho I.D., Castañeda-Alvarado E., Islas-Moreno C., Maya-Escudero D., Ruiz-Montañez F.J., Being semi-Kelley does not imply semi-smoothness, Questions Answers Gen. Topology 32 (2014), 73–77. Zbl1302.54066MR3222532
  2. Charatonik J.J., Semi-Kelley continua and smoothness, Questions Answers Gen. Topology 21 (2003), 103–108. Zbl1041.54031MR1998212
  3. Charatonik J.J., Charatonik W.J., A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69–99. Zbl0943.54022MR1743801
  4. Charatonik J.J., Charatonik W.J., 10.1090/S0002-9939-07-08650-9, Proc. Amer. Math. Soc. 136 (2008), 341–346. MR2350421DOI10.1090/S0002-9939-07-08650-9
  5. Charatonik W.J., On the property of Kelley in hyperspaces, Topology Proc. International Conference, Leningrand 1982, Lectures Notes in Math., 1060, Springer, Berlin, 1984, pp. 7–10. Zbl0548.54004MR0770219
  6. Eberhat C., Nadler S.B., Jr., The dimension of certain hyperspaces, Bull. Pol. Acad. Sci., 19 (1971), 1027–1034. MR0303513
  7. Kato H., 10.1090/S0002-9939-1991-1073527-4, Proc. Amer. Math. Soc. 112 (1991), 1143–1148. MR1073527DOI10.1090/S0002-9939-1991-1073527-4
  8. Kelley J.L., 10.1090/S0002-9947-1942-0006505-8, Trans. Amer. Math. Soc. 52 (1942), 22–36. Zbl0061.40107MR0006505DOI10.1090/S0002-9947-1942-0006505-8

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.