Displaying similar documents to “Property of being semi-Kelley for the cartesian products and hyperspaces”

On ( n , m ) - A -normal and ( n , m ) - A -quasinormal semi-Hilbertian space operators

Samir Al Mohammady, Sid Ahmed Ould Beinane, Sid Ahmed Ould Ahmed Mahmoud (2022)

Mathematica Bohemica

Similarity:

The purpose of the paper is to introduce and study a new class of operators on semi-Hilbertian spaces, i.e. spaces generated by positive semi-definite sesquilinear forms. Let be a Hilbert space and let A be a positive bounded operator on . The semi-inner product h k A : = A h k , h , k , induces a semi-norm · A . This makes into a semi-Hilbertian space. An operator T A ( ) is said to be ( n , m ) - A -normal if [ T n , ( T A ) m ] : = T n ( T A ) m - ( T A ) m T n = 0 for some positive integers n and m .

Some results on semi-stratifiable spaces

Wei-Feng Xuan, Yan-Kui Song (2019)

Mathematica Bohemica

Similarity:

We study relationships between separability with other properties in semi-stratifiable spaces. Especially, we prove the following statements: (1) If X is a semi-stratifiable space, then X is separable if and only if X is D C ( ω 1 ) ; (2) If X is a star countable extent semi-stratifiable space and has a dense metrizable subspace, then X is separable; (3) Let X be a ω -monolithic star countable extent semi-stratifiable space. If t ( X ) = ω and d ( X ) ω 1 , then X is hereditarily separable. Finally, we prove that for...

Migrativity properties of 2-uninorms over semi-t-operators

Ying Li-Jun, Qin Feng (2022)

Kybernetika

Similarity:

In this paper, we analyze and characterize all solutions about α -migrativity properties of the five subclasses of 2-uninorms, i. e. C k , C k 0 , C k 1 , C 1 0 , C 0 1 , over semi-t-operators. We give the sufficient and necessary conditions that make these α -migrativity equations hold for all possible combinations of 2-uninorms over semi-t-operators. The results obtained show that for G C k , the α -migrativity of G over a semi-t-operator F μ , ν is closely related to the α -section of F μ , ν or the ordinal sum representation...

Some results on semi-total signed graphs

Deepa Sinha, Pravin Garg (2011)

Discussiones Mathematicae Graph Theory

Similarity:

A signed graph (or sigraph in short) is an ordered pair S = ( S u , σ ) , where S u is a graph G = (V,E), called the underlying graph of S and σ:E → +, - is a function from the edge set E of S u into the set +,-, called the signature of S. The ×-line sigraph of S denoted by L × ( S ) is a sigraph defined on the line graph L ( S u ) of the graph S u by assigning to each edge ef of L ( S u ) , the product of signs of the adjacent edges e and f in S. In this paper, first we define semi-total line sigraph and semi-total point sigraph...

On Dimensionsgrad, resolutions, and chainable continua

Michael G. Charalambous, Jerzy Krzempek (2010)

Fundamenta Mathematicae

Similarity:

For each natural number n ≥ 1 and each pair of ordinals α,β with n ≤ α ≤ β ≤ ω(⁺), where ω(⁺) is the first ordinal of cardinality ⁺, we construct a continuum S n , α , β such that (a) d i m S n , α , β = n ; (b) t r D g S n , α , β = t r D g o S n , α , β = α ; (c) t r i n d S n , α , β = t r I n d S n , α , β = β ; (d) if β < ω(⁺), then S n , α , β is separable and first countable; (e) if n = 1, then S n , α , β can be made chainable or hereditarily decomposable; (f) if α = β < ω(⁺), then S n , α , β can be made hereditarily indecomposable; (g) if n = 1 and α = β < ω(⁺), then S n , α , β can be made chainable and hereditarily indecomposable. In...

Singular arc-like continua

Tadeusz Maćkowiak

Similarity:

CONTENTSIntroduction.......................................................................................................51. Preliminaries.................................................................................................6  A. Mappings....................................................................................................6  B. Arc-like continua.........................................................................................8  C. Pseudosuspensions...................................................................................8  D....

On the hyperspace C n ( X ) / C n K ( X )

José G. Anaya, Enrique Castañeda-Alvarado, José A. Martínez-Cortez (2021)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let X be a continuum and n a positive integer. Let C n ( X ) be the hyperspace of all nonempty closed subsets of X with at most n components, endowed with the Hausdorff metric. For K compact subset of X , define the hyperspace C n K ( X ) = { A C n ( X ) : K A } . In this paper, we consider the hyperspace C K n ( X ) = C n ( X ) / C n K ( X ) , which can be a tool to study the space C n ( X ) . We study this hyperspace in the class of finite graphs and in general, we prove some properties such as: aposyndesis, local connectedness, arcwise disconnectedness, and contractibility. ...

A continuum X such that C ( X ) is not continuously homogeneous

Alejandro Illanes (2016)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A metric continuum X is said to be continuously homogeneous provided that for every two points p , q X there exists a continuous surjective function f : X X such that f ( p ) = q . Answering a question by W.J. Charatonik and Z. Garncarek, in this paper we show a continuum X such that the hyperspace of subcontinua of X , C ( X ) , is not continuously homogeneous.

Making holes in the cone, suspension and hyperspaces of some continua

José G. Anaya, Enrique Castañeda-Alvarado, Alejandro Fuentes-Montes de Oca, Fernando Orozco-Zitli (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

A connected topological space Z is unicoherent provided that if Z = A B where A and B are closed connected subsets of Z , then A B is connected. Let Z be a unicoherent space, we say that z Z makes a hole in Z if Z - { z } is not unicoherent. In this work the elements that make a hole to the cone and the suspension of a metric space are characterized. We apply this to give the classification of the elements of hyperspaces of some continua that make them hole.

On affinity of Peano type functions

Tomasz Słonka (2012)

Colloquium Mathematicae

Similarity:

We show that if n is a positive integer and 2 , then for every positive integer m and for every real constant c > 0 there are functions f , . . . , f n + m : such that ( f , . . . , f n + m ) ( ) = n + m and for every x ∈ ℝⁿ there exists a strictly increasing sequence (i₁,...,iₙ) of numbers from 1,...,n+m and a w ∈ ℤⁿ such that ( f i , . . . , f i ) ( y ) = y + w for y x + ( - c , c ) × n - 1 .