The search session has expired. Please query the service again.

Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths

Byoung Soo Kim; Dong Hyun Cho

Czechoslovak Mathematical Journal (2017)

  • Volume: 67, Issue: 3, page 609-628
  • ISSN: 0011-4642

Abstract

top
Let C [ 0 , t ] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [ 0 , t ] , and define a random vector Z n : C [ 0 , t ] n + 1 by Z n ( x ) = x ( 0 ) + a ( 0 ) , 0 t 1 h ( s ) d x ( s ) + x ( 0 ) + a ( t 1 ) , , 0 t n h ( s ) d x ( s ) + x ( 0 ) + a ( t n ) , where a C [ 0 , t ] , h L 2 [ 0 , t ] , and 0 < t 1 < < t n t is a partition of [ 0 , t ] . Using simple formulas for generalized conditional Wiener integrals, given Z n we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions F in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra 𝒮 . Finally, we express the generalized analytic conditional Feynman integral of F as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space C [ 0 , t ] .

How to cite

top

Kim, Byoung Soo, and Cho, Dong Hyun. "Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths." Czechoslovak Mathematical Journal 67.3 (2017): 609-628. <http://eudml.org/doc/294139>.

@article{Kim2017,
abstract = {Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\rightarrow \mathbb \{R\}^\{n+1\}$ by \[ Z\_n(x)=\biggl (x(0)+a(0), \int \_0^\{t\_1\}h(s) \{\rm d\} x(s)+x(0)+a(t\_1), \cdots ,\int \_0^\{t\_n\}h(s) \{\rm d\} x(s)+x(0)+a(t\_n)\biggr ), \] where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0<t_1 < \cdots < t_n\le t$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra $\mathcal \{S\}$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$.},
author = {Kim, Byoung Soo, Cho, Dong Hyun},
journal = {Czechoslovak Mathematical Journal},
keywords = {analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral},
language = {eng},
number = {3},
pages = {609-628},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths},
url = {http://eudml.org/doc/294139},
volume = {67},
year = {2017},
}

TY - JOUR
AU - Kim, Byoung Soo
AU - Cho, Dong Hyun
TI - Relationships between generalized Wiener integrals and conditional analytic Feynman integrals over continuous paths
JO - Czechoslovak Mathematical Journal
PY - 2017
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 67
IS - 3
SP - 609
EP - 628
AB - Let $C[0,t]$ denote a generalized Wiener space, the space of real-valued continuous functions on the interval $[0,t]$, and define a random vector $Z_n\colon C[0,t]\rightarrow \mathbb {R}^{n+1}$ by \[ Z_n(x)=\biggl (x(0)+a(0), \int _0^{t_1}h(s) {\rm d} x(s)+x(0)+a(t_1), \cdots ,\int _0^{t_n}h(s) {\rm d} x(s)+x(0)+a(t_n)\biggr ), \] where $a\in C[0,t]$, $h\in L_2[0,t]$, and $0<t_1 < \cdots < t_n\le t$ is a partition of $[0,t]$. Using simple formulas for generalized conditional Wiener integrals, given $Z_n$ we will evaluate the generalized analytic conditional Wiener and Feynman integrals of the functions $F$ in a Banach algebra which corresponds to Cameron-Storvick’s Banach algebra $\mathcal {S}$. Finally, we express the generalized analytic conditional Feynman integral of $F$ as a limit of the non-conditional generalized Wiener integral of a polygonal function using a change of scale transformation for which a normal density is the kernel. This result extends the existing change of scale formulas on the classical Wiener space, abstract Wiener space and the analogue of the Wiener space $C[0,t]$.
LA - eng
KW - analogue of Wiener space; analytic conditional Feynman integral; change of scale formula; conditional Wiener integral; Wiener integral
UR - http://eudml.org/doc/294139
ER -

References

top
  1. Cameron, R. H., 10.1215/S0012-7094-54-02165-1, Duke Math. J. 21 (1954), 623-627. (1954) Zbl0057.09601MR0065033DOI10.1215/S0012-7094-54-02165-1
  2. Cameron, R. H., Martin, W. T., 10.1090/S0002-9904-1947-08762-0, Bull. Am. Math. Soc. 53 (1947), 130-137. (1947) Zbl0032.41801MR0019259DOI10.1090/S0002-9904-1947-08762-0
  3. Cameron, R. H., Storvick, D. A., 10.1007/bfb0097256, Analytic Functions Proc. Conf. Kozubnik 1979, Lect. Notes Math. 798, Springer, Berlin (1980), 18-67. (1980) Zbl0439.28007MR0577446DOI10.1007/bfb0097256
  4. Cameron, R. H., Storvick, D. A., Change of scale formulas for Wiener integral, Functional Integration with Emphasis on the Feynman Integral Proc. Workshop Sherbrooke 1986, Suppl. Rend. Circ. Mat. Palermo, II. Ser. (1988), 105-115. (1988) Zbl0653.28005MR0950411
  5. Chang, K. S., Cho, D. H., Yoo, I., 10.1023/B:CMAJ.0000027256.06816.1a, Czech. Math. J. 54 (2004), 161-180. (2004) Zbl1047.28008MR2040228DOI10.1023/B:CMAJ.0000027256.06816.1a
  6. Cho, D. H., 10.4134/CKMS.2007.22.1.091, Commun. Korean Math. Soc. 22 (2007), 91-109. (2007) Zbl1168.28311MR2286898DOI10.4134/CKMS.2007.22.1.091
  7. Cho, D. H., 10.12988/ijma.2013.3363, Int. J. Math. Anal., Ruse 7 (2013), 1419-1431. (2013) Zbl1285.28018MR3066550DOI10.12988/ijma.2013.3363
  8. Cho, D. H., 10.1155/2014/916423, Abstr. Appl. Anal. (2014), Article ID 916423, 12 pages. (2014) MR3226236DOI10.1155/2014/916423
  9. Cho, D. H., 10.1215/20088752-3544830, Ann. Funct. Anal. AFA 7 (2016), 358-370. (2016) Zbl1346.46038MR3484389DOI10.1215/20088752-3544830
  10. Cho, D. H., 10.4134/JKMS.j150285, J. Korean Math. Soc. 53 (2016), 709-723. (2016) Zbl1339.28019MR3498289DOI10.4134/JKMS.j150285
  11. Cho, D. H., Kim, B. J., Yoo, I., 10.1016/j.jmaa.2009.05.023, J. Math. Anal. Appl. 359 (2009), 421-438. (2009) Zbl1175.28010MR2546758DOI10.1016/j.jmaa.2009.05.023
  12. Cho, D. H., Yoo, I., 10.4134/BKMS.b150795, Bull. Korean Math. Soc. 53 (2016), 1531-1548. (2016) Zbl1350.28015MR3553416DOI10.4134/BKMS.b150795
  13. Im, M. K., Ryu, K. S., 10.4134/JKMS.2002.39.5.801, J. Korean Math. Soc. 39 (2002), 801-819. (2002) Zbl1017.28007MR1920906DOI10.4134/JKMS.2002.39.5.801
  14. Kim, B. S., 10.14403/jcms.2014.27.2.249, J. Chungcheong Math. Soc. 27 (2014), 249-260. (2014) DOI10.14403/jcms.2014.27.2.249
  15. Kuo, H.-H., 10.1007/BFb0082007, Lecture Notes in Mathematics 463, Springer, Berlin (1975). (1975) Zbl0306.28010MR0461643DOI10.1007/BFb0082007
  16. Pierce, I. D., On a Family of Generalized Wiener Spaces and Applications, Ph.D. Thesis, The University of Nebraska, Lincoln (2011). (2011) MR2890101
  17. Ryu, K. S., Im, M. K., 10.1090/S0002-9947-02-03077-5, Trans. Am. Math. Soc. 354 (2002), 4921-4951. (2002) Zbl1017.28008MR1926843DOI10.1090/S0002-9947-02-03077-5
  18. Yoo, I., Chang, K. S., Cho, D. H., Kim, B. S., Song, T. S., 10.4134/JKMS.2007.44.4.1025, J. Korean Math. Soc. 44 (2007), 1025-1050. (2007) Zbl1129.28014MR2334543DOI10.4134/JKMS.2007.44.4.1025
  19. Yoo, I., Skoug, D., 10.1155/S0161171294000359, Int. J. Math. Math. Sci. 17 (1994), 239-247. (1994) Zbl0802.28008MR1261069DOI10.1155/S0161171294000359
  20. Yoo, I., Skoug, D., A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), 115-129. (1994) Zbl0802.28009MR1269456
  21. Yoo, I., Song, T. S., Kim, B. S., Chang, K. S., 10.1216/rmjm/1181069911, Rocky Mt. J. Math. 34 (2004), 371-389. (2004) Zbl1048.28010MR2061137DOI10.1216/rmjm/1181069911

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.