On a divisibility problem
Shichun Yang; Florian Luca; Alain Togbé
Mathematica Bohemica (2019)
- Volume: 144, Issue: 2, page 125-135
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topYang, Shichun, Luca, Florian, and Togbé, Alain. "On a divisibility problem." Mathematica Bohemica 144.2 (2019): 125-135. <http://eudml.org/doc/294176>.
@article{Yang2019,
abstract = {Let $p_\{1\}, p_\{2\}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \ge 5 $, then \[ (p\_\{k+1\}-1)! \mid (\tfrac\{1\}\{2\} (p\_\{k +1\} - 1))! p\_ \{k\}!, \]
which improves a previous result of the second author.},
author = {Yang, Shichun, Luca, Florian, Togbé, Alain},
journal = {Mathematica Bohemica},
keywords = {prime; divisibility; exponent; Sándor-Luca's theorem},
language = {eng},
number = {2},
pages = {125-135},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a divisibility problem},
url = {http://eudml.org/doc/294176},
volume = {144},
year = {2019},
}
TY - JOUR
AU - Yang, Shichun
AU - Luca, Florian
AU - Togbé, Alain
TI - On a divisibility problem
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 125
EP - 135
AB - Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \ge 5 $, then \[ (p_{k+1}-1)! \mid (\tfrac{1}{2} (p_{k +1} - 1))! p_ {k}!, \]
which improves a previous result of the second author.
LA - eng
KW - prime; divisibility; exponent; Sándor-Luca's theorem
UR - http://eudml.org/doc/294176
ER -
References
top- Atanassov, K. T., Remark on József Sándor and Florian Luca's theorem, C. R. Acad. Bulg. Sci. 55 (2002), 9-14. (2002) Zbl1011.11007MR1938730
- Berend, D., 10.1006/jnth.1997.2106, J. Number Theory 64 (1997), 13-19 9999DOI99999 10.1006/jnth.1997.2106 . (1997) Zbl0874.11025MR1450483DOI10.1006/jnth.1997.2106
- Chen, Y. G., Zhu, Y. C., 10.1006/jnth.1999.2477, J. Number Theory 82 (2000), 1-11. (2000) Zbl0999.11015MR1755150DOI10.1006/jnth.1999.2477
- Dusart, P., Explicit inequalities for , , and prime numbers, C. R. Math. Acad. Sci., Soc. R. Can. 21 (1999), 53-59 French. (1999) Zbl0935.11002MR1697455
- Dusart, P., 10.1090/S0025-5718-99-01037-6, Math. Comput. 68 (1999), 411-415. (1999) Zbl0913.11039MR1620223DOI10.1090/S0025-5718-99-01037-6
- Erdős, P., 10.1112/jlms/s1-14.3.194, J. Lond. Math. Soc. 14 (1939), 194-198. (1939) Zbl0021.20704MR0000022DOI10.1112/jlms/s1-14.3.194
- Erdős, P., 10.2307/2308371, Am. Math. Monthly 58 (1951), 98-101. (1951) Zbl0042.27501MR0040320DOI10.2307/2308371
- Erdős, P., Graham, R. L., Old and New Problems and Results in Combinatorial Number Theory, Monographs of L'Enseignement Mathématique 28. L'Enseignement Mathématique, Université de Genève, Genève (1980). (1980) Zbl0434.10001MR0592420
- Erdős, P., Selfridge, J. L., 10.1215/ijm/1256050816, Ill. J. Math. 19 (1975), 292-301. (1975) Zbl0295.10017MR0376517DOI10.1215/ijm/1256050816
- Hildebrand, A., Tenenbaum, G., 10.5802/jtnb.101, J. Théor. Nombres Bordx. 5 (1993), 411-484. (1993) Zbl0797.11070MR1265913DOI10.5802/jtnb.101
- Le, M., A conjecture concerning the Smarandache dual function, Smarandache Notion J. 14 (2004), 153-155. (2004) Zbl1259.11011MR1650404
- Luca, F., On a divisibility property involving factorials, C. R. Acad. Bulg. Sci. 53 (2000), 35-38. (2000) Zbl0954.11008MR1777831
- Luca, F., Stănică, P., 10.1016/S0022-314X(03)00102-1, J. Number Theory 102 (2003), 298-305. (2003) Zbl1049.11092MR1997793DOI10.1016/S0022-314X(03)00102-1
- Moree, P., Roskam, H., On an arithmetical function related to Euler's totient and the discriminantor, Fibonacci Q. 33 (1995), 332-340. (1995) Zbl0827.11002MR1341262
- Nagura, J., 10.3792/pja/1195570997, Proc. Japan Acad. 28 (1952), 177-181. (1952) Zbl0047.04405MR0050615DOI10.3792/pja/1195570997
- Rosser, J. B., Schoenfeld, L., 10.1215/ijm/1255631807, Ill. J. Math. 6 (1962), 64-94. (1962) Zbl0122.05001MR0137689DOI10.1215/ijm/1255631807
- Sándor, J., On values of arithmetical functions at factorials I, Smarandache Notions J. 10 (1999), 87-94. (1999) Zbl1115.11301MR1682453
- Sándor, J., On certain generalizations of the Smarandache function, Smarandache Notions J. 11 (2000), 202-212. (2000) MR1764904
- Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics 46. Cambridge University Press, Cambridge (1995). (1995) Zbl0831.11001MR1342300
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.