On a divisibility problem

Shichun Yang; Florian Luca; Alain Togbé

Mathematica Bohemica (2019)

  • Volume: 144, Issue: 2, page 125-135
  • ISSN: 0862-7959

Abstract

top
Let p 1 , p 2 , be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if k 5 , then ( p k + 1 - 1 ) ! ( 1 2 ( p k + 1 - 1 ) ) ! p k ! , which improves a previous result of the second author.

How to cite

top

Yang, Shichun, Luca, Florian, and Togbé, Alain. "On a divisibility problem." Mathematica Bohemica 144.2 (2019): 125-135. <http://eudml.org/doc/294176>.

@article{Yang2019,
abstract = {Let $p_\{1\}, p_\{2\}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \ge 5 $, then \[ (p\_\{k+1\}-1)! \mid (\tfrac\{1\}\{2\} (p\_\{k +1\} - 1))! p\_ \{k\}!, \] which improves a previous result of the second author.},
author = {Yang, Shichun, Luca, Florian, Togbé, Alain},
journal = {Mathematica Bohemica},
keywords = {prime; divisibility; exponent; Sándor-Luca's theorem},
language = {eng},
number = {2},
pages = {125-135},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a divisibility problem},
url = {http://eudml.org/doc/294176},
volume = {144},
year = {2019},
}

TY - JOUR
AU - Yang, Shichun
AU - Luca, Florian
AU - Togbé, Alain
TI - On a divisibility problem
JO - Mathematica Bohemica
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 144
IS - 2
SP - 125
EP - 135
AB - Let $p_{1}, p_{2}, \cdots $ be the sequence of all primes in ascending order. Using explicit estimates from the prime number theory, we show that if $ k \ge 5 $, then \[ (p_{k+1}-1)! \mid (\tfrac{1}{2} (p_{k +1} - 1))! p_ {k}!, \] which improves a previous result of the second author.
LA - eng
KW - prime; divisibility; exponent; Sándor-Luca's theorem
UR - http://eudml.org/doc/294176
ER -

References

top
  1. Atanassov, K. T., Remark on József Sándor and Florian Luca's theorem, C. R. Acad. Bulg. Sci. 55 (2002), 9-14. (2002) Zbl1011.11007MR1938730
  2. Berend, D., 10.1006/jnth.1997.2106, J. Number Theory 64 (1997), 13-19 9999DOI99999 10.1006/jnth.1997.2106 . (1997) Zbl0874.11025MR1450483DOI10.1006/jnth.1997.2106
  3. Chen, Y. G., Zhu, Y. C., 10.1006/jnth.1999.2477, J. Number Theory 82 (2000), 1-11. (2000) Zbl0999.11015MR1755150DOI10.1006/jnth.1999.2477
  4. Dusart, P., Explicit inequalities for ψ ( X ) , θ ( X ) , π ( X ) and prime numbers, C. R. Math. Acad. Sci., Soc. R. Can. 21 (1999), 53-59 French. (1999) Zbl0935.11002MR1697455
  5. Dusart, P., 10.1090/S0025-5718-99-01037-6, Math. Comput. 68 (1999), 411-415. (1999) Zbl0913.11039MR1620223DOI10.1090/S0025-5718-99-01037-6
  6. Erdős, P., 10.1112/jlms/s1-14.3.194, J. Lond. Math. Soc. 14 (1939), 194-198. (1939) Zbl0021.20704MR0000022DOI10.1112/jlms/s1-14.3.194
  7. Erdős, P., 10.2307/2308371, Am. Math. Monthly 58 (1951), 98-101. (1951) Zbl0042.27501MR0040320DOI10.2307/2308371
  8. Erdős, P., Graham, R. L., Old and New Problems and Results in Combinatorial Number Theory, Monographs of L'Enseignement Mathématique 28. L'Enseignement Mathématique, Université de Genève, Genève (1980). (1980) Zbl0434.10001MR0592420
  9. Erdős, P., Selfridge, J. L., 10.1215/ijm/1256050816, Ill. J. Math. 19 (1975), 292-301. (1975) Zbl0295.10017MR0376517DOI10.1215/ijm/1256050816
  10. Hildebrand, A., Tenenbaum, G., 10.5802/jtnb.101, J. Théor. Nombres Bordx. 5 (1993), 411-484. (1993) Zbl0797.11070MR1265913DOI10.5802/jtnb.101
  11. Le, M., A conjecture concerning the Smarandache dual function, Smarandache Notion J. 14 (2004), 153-155. (2004) Zbl1259.11011MR1650404
  12. Luca, F., On a divisibility property involving factorials, C. R. Acad. Bulg. Sci. 53 (2000), 35-38. (2000) Zbl0954.11008MR1777831
  13. Luca, F., Stănică, P., 10.1016/S0022-314X(03)00102-1, J. Number Theory 102 (2003), 298-305. (2003) Zbl1049.11092MR1997793DOI10.1016/S0022-314X(03)00102-1
  14. Moree, P., Roskam, H., On an arithmetical function related to Euler's totient and the discriminantor, Fibonacci Q. 33 (1995), 332-340. (1995) Zbl0827.11002MR1341262
  15. Nagura, J., 10.3792/pja/1195570997, Proc. Japan Acad. 28 (1952), 177-181. (1952) Zbl0047.04405MR0050615DOI10.3792/pja/1195570997
  16. Rosser, J. B., Schoenfeld, L., 10.1215/ijm/1255631807, Ill. J. Math. 6 (1962), 64-94. (1962) Zbl0122.05001MR0137689DOI10.1215/ijm/1255631807
  17. Sándor, J., On values of arithmetical functions at factorials I, Smarandache Notions J. 10 (1999), 87-94. (1999) Zbl1115.11301MR1682453
  18. Sándor, J., On certain generalizations of the Smarandache function, Smarandache Notions J. 11 (2000), 202-212. (2000) MR1764904
  19. Tenenbaum, G., Introduction to Analytic and Probabilistic Number Theory, Cambridge Studies in Advanced Mathematics 46. Cambridge University Press, Cambridge (1995). (1995) Zbl0831.11001MR1342300

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.