Displaying similar documents to “A characterization of reflexive spaces of operators”

The weak Gelfand-Phillips property in spaces of compact operators

Ioana Ghenciu (2017)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

For Banach spaces X and Y , let K w * ( X * , Y ) denote the space of all w * - w continuous compact operators from X * to Y endowed with the operator norm. A Banach space X has the w G P property if every Grothendieck subset of X is relatively weakly compact. In this paper we study Banach spaces with property w G P . We investigate whether the spaces K w * ( X * , Y ) and X ϵ Y have the w G P property, when X and Y have the w G P property.

Linear maps preserving A -unitary operators

Abdellatif Chahbi, Samir Kabbaj, Ahmed Charifi (2016)

Mathematica Bohemica

Similarity:

Let be a complex Hilbert space, A a positive operator with closed range in ( ) and A ( ) the sub-algebra of ( ) of all A -self-adjoint operators. Assume φ : A ( ) onto itself is a linear continuous map. This paper shows that if φ preserves A -unitary operators such that φ ( I ) = P then ψ defined by ψ ( T ) = P φ ( P T ) is a homomorphism or an anti-homomorphism and ψ ( T ) = ψ ( T ) for all T A ( ) , where P = A + A and A + is the Moore-Penrose inverse of A . A similar result is also true if φ preserves A -quasi-unitary operators in both directions such that there...

The boundedness of two classes of integral operators

Xin Wang, Ming-Sheng Liu (2021)

Czechoslovak Mathematical Journal

Similarity:

The aim of this paper is to characterize the L p - L q boundedness of two classes of integral operators from L p ( 𝒰 , d V α ) to L q ( 𝒰 , d V β ) in terms of the parameters a , b , c , p , q and α , β , where 𝒰 is the Siegel upper half-space. The results in the presented paper generalize a corresponding result given in C. Liu, Y. Liu, P. Hu, L. Zhou (2019).

A note on Dunford-Pettis like properties and complemented spaces of operators

Ioana Ghenciu (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Equivalent formulations of the Dunford-Pettis property of order p ( D P P p ), 1 < p < , are studied. Let L ( X , Y ) , W ( X , Y ) , K ( X , Y ) , U ( X , Y ) , and C p ( X , Y ) denote respectively the sets of all bounded linear, weakly compact, compact, unconditionally converging, and p -convergent operators from X to Y . Classical results of Kalton are used to study the complementability of the spaces W ( X , Y ) and K ( X , Y ) in the space C p ( X , Y ) , and of C p ( X , Y ) in U ( X , Y ) and L ( X , Y ) .

Sum-product theorems and incidence geometry

Mei-Chu Chang, Jozsef Solymosi (2007)

Journal of the European Mathematical Society

Similarity:

In this paper we prove the following theorems in incidence geometry. 1. There is δ > 0 such that for any P 1 , , P 4 , and Q 1 , , Q n 2 , if there are n ( 1 + δ ) / 2 many distinct lines between P i and Q j for all i , j , then P 1 , , P 4 are collinear. If the number of the distinct lines is < c n 1 / 2 then the cross ratio of the four points is algebraic. 2. Given c > 0 , there is δ > 0 such that for any P 1 , P 2 , P 3 2 noncollinear, and Q 1 , , Q n 2 , if there are c n 1 / 2 many distinct lines between P i and Q j for all i , j , then for any P 2 { P 1 , P 2 , P 3 } , we have δ n distinct lines between P and Q j . 3. Given...

𝒞 k -regularity for the ¯ -equation with a support condition

Shaban Khidr, Osama Abdelkader (2017)

Czechoslovak Mathematical Journal

Similarity:

Let D be a 𝒞 d q -convex intersection, d 2 , 0 q n - 1 , in a complex manifold X of complex dimension n , n 2 , and let E be a holomorphic vector bundle of rank N over X . In this paper, 𝒞 k -estimates, k = 2 , 3 , , , for solutions to the ¯ -equation with small loss of smoothness are obtained for E -valued ( 0 , s ) -forms on D when n - q s n . In addition, we solve the ¯ -equation with a support condition in 𝒞 k -spaces. More precisely, we prove that for a ¯ -closed form f in 𝒞 0 , q k ( X D , E ) , 1 q n - 2 , n 3 , with compact support and for ε with 0 < ε < 1 there...