Existence and multiplicity of solutions for a fractional -Laplacian problem of Kirchhoff type via Krasnoselskii’s genus
Ghania Benhamida; Toufik Moussaoui
Mathematica Bohemica (2018)
- Volume: 143, Issue: 2, page 189-200
- ISSN: 0862-7959
Access Full Article
topAbstract
topHow to cite
topBenhamida, Ghania, and Moussaoui, Toufik. "Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii’s genus." Mathematica Bohemica 143.2 (2018): 189-200. <http://eudml.org/doc/294212>.
@article{Benhamida2018,
abstract = {We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem \[ \{\left\lbrace \begin\{array\}\{ll\} \displaystyle -\biggl [M \biggl (\int \_\{Q\}\dfrac\{\vert u(x)-u(y)\vert ^\{p\}\}\{\vert x-y \vert ^\{N+ps\}\} \{\rm d\}x \{\rm d\}y\biggr )\biggr ]^\{p-1\} (-\Delta )\_\{p\}^\{s\}u=\lambda h(x,u) \quad \text\{in\}\ \Omega , \\ u=0 \quad \text\{on\}\ \mathbb \{R\}^N \setminus \Omega , \end\{array\}\right.\} \]
where $\Omega $ is an open bounded smooth domain of $\mathbb \{R\}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb \{R\}^\{2N\}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions.},
author = {Benhamida, Ghania, Moussaoui, Toufik},
journal = {Mathematica Bohemica},
keywords = {existence results; genus theory; fractional $p$-Kirchhoff problem},
language = {eng},
number = {2},
pages = {189-200},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii’s genus},
url = {http://eudml.org/doc/294212},
volume = {143},
year = {2018},
}
TY - JOUR
AU - Benhamida, Ghania
AU - Moussaoui, Toufik
TI - Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii’s genus
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 2
SP - 189
EP - 200
AB - We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem \[ {\left\lbrace \begin{array}{ll} \displaystyle -\biggl [M \biggl (\int _{Q}\dfrac{\vert u(x)-u(y)\vert ^{p}}{\vert x-y \vert ^{N+ps}} {\rm d}x {\rm d}y\biggr )\biggr ]^{p-1} (-\Delta )_{p}^{s}u=\lambda h(x,u) \quad \text{in}\ \Omega , \\ u=0 \quad \text{on}\ \mathbb {R}^N \setminus \Omega , \end{array}\right.} \]
where $\Omega $ is an open bounded smooth domain of $\mathbb {R}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb {R}^{2N}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions.
LA - eng
KW - existence results; genus theory; fractional $p$-Kirchhoff problem
UR - http://eudml.org/doc/294212
ER -
References
top- Autuori, G., Colasuonno, F., Pucci, P., 10.1142/S0219199714500023, Commun. Contemp. Math. 16 (2014), Article ID 1450002, 43 pages. (2014) Zbl1325.35129MR3253900DOI10.1142/S0219199714500023
- Caffarelli, L., 10.1007/978-3-642-25361-4_3, Nonlinear Partial Differential Equations. Abel Symposia, vol. H. Holden et al. Springer, Heidelberg (2012), 37-52. (2012) Zbl1266.35060MR3289358DOI10.1007/978-3-642-25361-4_3
- Castro, A., Metodos variacionales y analisis functional no linear, X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980), Spain. (1980)
- Chen, J., Cheng, B., Tang, X., 10.1007/s13398-016-0372-5, Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. (2016) MR3742996DOI10.1007/s13398-016-0372-5
- Chen, W., Deng, S., 10.14232/ejqtde.2015.1.87, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 87, 8 pages. (2015) Zbl1349.35088MR3434217DOI10.14232/ejqtde.2015.1.87
- Cheng, K., Gao, Q., Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in , Avaible at https://arxiv.org/abs/1701.03862v1.
- Clarke, D. C., 10.1512/iumj.1972.22.22008, Math. J., Indiana Univ. 22 (1972), 65-74. (1972) Zbl0228.58006MR0296777DOI10.1512/iumj.1972.22.22008
- Colasuonno, F., Pucci, P., 10.1016/j.na.2011.05.073, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5962-5974. (2011) Zbl1232.35052MR2833367DOI10.1016/j.na.2011.05.073
- Corrêa, F. J. S. A., Figueiredo, G. M., 10.1017/S000497270003570X, Bull. Aust. Math. Soc. 74 (2006), 263-277. (2006) Zbl1108.45005MR2260494DOI10.1017/S000497270003570X
- Corrêa, F. J. S. A., Figueiredo, G. M., 10.1016/j.aml.2008.06.042, Appl. Math. Lett. 22 (2009), 819-822. (2009) Zbl1171.35371MR2523587DOI10.1016/j.aml.2008.06.042
- Nezza, E. Di, Palatucci, G., Valdinoci, E., 10.1016/j.bulsci.2011.12.004, Bull. Sci. Math. 136 (2012), 521-573. (2012) Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
- Dreher, M., The Kirchhoff equation for the -Laplacian, Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. (2006) Zbl1178.35006MR2272915
- Goyal, S., Sreenadh, K., 10.1007/s12044-015-0244-5, Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. (2015) Zbl1332.35375MR3432207DOI10.1007/s12044-015-0244-5
- Kavian, O., Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Mathématiques et Applications. Springer, Paris (1993). (1993) Zbl0797.58005MR1276944
- Krasnoselsk'ii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). (1964) Zbl0111.30303MR0159197
- Bisci, G. Molica, Radulescu, V. D., Servadei, R., 10.1017/CBO9781316282397, Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). (2016) Zbl1356.49003MR3445279DOI10.1017/CBO9781316282397
- Ourraoui, A., 10.1016/j.crma.2014.01.015, C. R. Math., Acad. Sci. Paris 352 (2014), 295-298. (2014) Zbl1298.35096MR3186916DOI10.1016/j.crma.2014.01.015
- Peral, I., Multiplicity of solutions for the -Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997). (1997)
- Rabinowitz, P. H., 10.1090/cbms/065, CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). (1984) Zbl0609.58002MR0845785DOI10.1090/cbms/065
- Servadei, R., Valdinoci, E., 10.1016/j.jmaa.2011.12.032, J. Math. Anal. Appl. 389 (2012), 887-898. (2012) Zbl1234.35291MR2879266DOI10.1016/j.jmaa.2011.12.032
- Servadei, R., Valdinoci, E., 10.1090/S0002-9947-2014-05884-4, Trans. Am. Math. Soc. 367 (2015), 67-102. (2015) Zbl1323.35202MR3271254DOI10.1090/S0002-9947-2014-05884-4
- Silvestre, L., 10.1002/cpa.20153, Commun. Pure Appl. Math. 60 (2007), 67-112. (2007) Zbl1141.49035MR2270163DOI10.1002/cpa.20153
- Wang, L., Zhang, B., Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional -Laplacian and critical exponent, Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. (2016) Zbl1353.35307MR3604784
- Zhang, L., Chen, Y., 10.1016/j.na.2016.12.001, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. (2017) Zbl06675023MR3596674DOI10.1016/j.na.2016.12.001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.