Existence and multiplicity of solutions for a fractional p -Laplacian problem of Kirchhoff type via Krasnoselskii’s genus

Ghania Benhamida; Toufik Moussaoui

Mathematica Bohemica (2018)

  • Volume: 143, Issue: 2, page 189-200
  • ISSN: 0862-7959

Abstract

top
We use the genus theory to prove the existence and multiplicity of solutions for the fractional p -Kirchhoff problem - M Q | u ( x ) - u ( y ) | p | x - y | N + p s d x d y p - 1 ( - Δ ) p s u = λ h ( x , u ) in Ω , u = 0 on N Ω , where Ω is an open bounded smooth domain of N , p > 1 , N > p s with s ( 0 , 1 ) fixed, Q = 2 N ( C Ω × C Ω ) , λ > 0 is a numerical parameter, M and h are continuous functions.

How to cite

top

Benhamida, Ghania, and Moussaoui, Toufik. "Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii’s genus." Mathematica Bohemica 143.2 (2018): 189-200. <http://eudml.org/doc/294212>.

@article{Benhamida2018,
abstract = {We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem \[ \{\left\lbrace \begin\{array\}\{ll\} \displaystyle -\biggl [M \biggl (\int \_\{Q\}\dfrac\{\vert u(x)-u(y)\vert ^\{p\}\}\{\vert x-y \vert ^\{N+ps\}\} \{\rm d\}x \{\rm d\}y\biggr )\biggr ]^\{p-1\} (-\Delta )\_\{p\}^\{s\}u=\lambda h(x,u) \quad \text\{in\}\ \Omega , \\ u=0 \quad \text\{on\}\ \mathbb \{R\}^N \setminus \Omega , \end\{array\}\right.\} \] where $\Omega $ is an open bounded smooth domain of $\mathbb \{R\}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb \{R\}^\{2N\}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions.},
author = {Benhamida, Ghania, Moussaoui, Toufik},
journal = {Mathematica Bohemica},
keywords = {existence results; genus theory; fractional $p$-Kirchhoff problem},
language = {eng},
number = {2},
pages = {189-200},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii’s genus},
url = {http://eudml.org/doc/294212},
volume = {143},
year = {2018},
}

TY - JOUR
AU - Benhamida, Ghania
AU - Moussaoui, Toufik
TI - Existence and multiplicity of solutions for a fractional $p$-Laplacian problem of Kirchhoff type via Krasnoselskii’s genus
JO - Mathematica Bohemica
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 143
IS - 2
SP - 189
EP - 200
AB - We use the genus theory to prove the existence and multiplicity of solutions for the fractional $p$-Kirchhoff problem \[ {\left\lbrace \begin{array}{ll} \displaystyle -\biggl [M \biggl (\int _{Q}\dfrac{\vert u(x)-u(y)\vert ^{p}}{\vert x-y \vert ^{N+ps}} {\rm d}x {\rm d}y\biggr )\biggr ]^{p-1} (-\Delta )_{p}^{s}u=\lambda h(x,u) \quad \text{in}\ \Omega , \\ u=0 \quad \text{on}\ \mathbb {R}^N \setminus \Omega , \end{array}\right.} \] where $\Omega $ is an open bounded smooth domain of $\mathbb {R}^N$, $p>1$, $N>ps$ with $s\in (0,1)$ fixed, $Q = \mathbb {R}^{2N}\setminus (C\Omega \times C\Omega )$, $\lambda > 0$ is a numerical parameter, $M$ and $h$ are continuous functions.
LA - eng
KW - existence results; genus theory; fractional $p$-Kirchhoff problem
UR - http://eudml.org/doc/294212
ER -

References

top
  1. Autuori, G., Colasuonno, F., Pucci, P., 10.1142/S0219199714500023, Commun. Contemp. Math. 16 (2014), Article ID 1450002, 43 pages. (2014) Zbl1325.35129MR3253900DOI10.1142/S0219199714500023
  2. Caffarelli, L., 10.1007/978-3-642-25361-4_3, Nonlinear Partial Differential Equations. Abel Symposia, vol. H. Holden et al. Springer, Heidelberg (2012), 37-52. (2012) Zbl1266.35060MR3289358DOI10.1007/978-3-642-25361-4_3
  3. Castro, A., Metodos variacionales y analisis functional no linear, X Colóquio Colombiano de Matematicas. Monograph published by the Colombian Math. Society, Paipa (1980), Spain. (1980) 
  4. Chen, J., Cheng, B., Tang, X., 10.1007/s13398-016-0372-5, Rev. Real Acad. Cien. Exact., Fís. Nat., Serie A. Mat. (2016), 1-24. (2016) MR3742996DOI10.1007/s13398-016-0372-5
  5. Chen, W., Deng, S., 10.14232/ejqtde.2015.1.87, Electron. J. Qual. Theory Differ. Equ. 2015 (2015), Article ID 87, 8 pages. (2015) Zbl1349.35088MR3434217DOI10.14232/ejqtde.2015.1.87
  6. Cheng, K., Gao, Q., Sign-changing solutions for the stationary Kirchhoff problems involving the fractional Laplacian in , Avaible at https://arxiv.org/abs/1701.03862v1. 
  7. Clarke, D. C., 10.1512/iumj.1972.22.22008, Math. J., Indiana Univ. 22 (1972), 65-74. (1972) Zbl0228.58006MR0296777DOI10.1512/iumj.1972.22.22008
  8. Colasuonno, F., Pucci, P., 10.1016/j.na.2011.05.073, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 5962-5974. (2011) Zbl1232.35052MR2833367DOI10.1016/j.na.2011.05.073
  9. Corrêa, F. J. S. A., Figueiredo, G. M., 10.1017/S000497270003570X, Bull. Aust. Math. Soc. 74 (2006), 263-277. (2006) Zbl1108.45005MR2260494DOI10.1017/S000497270003570X
  10. Corrêa, F. J. S. A., Figueiredo, G. M., 10.1016/j.aml.2008.06.042, Appl. Math. Lett. 22 (2009), 819-822. (2009) Zbl1171.35371MR2523587DOI10.1016/j.aml.2008.06.042
  11. Nezza, E. Di, Palatucci, G., Valdinoci, E., 10.1016/j.bulsci.2011.12.004, Bull. Sci. Math. 136 (2012), 521-573. (2012) Zbl1252.46023MR2944369DOI10.1016/j.bulsci.2011.12.004
  12. Dreher, M., The Kirchhoff equation for the p -Laplacian, Rend. Semin. Mat. Univ. Politec. Torino 64 (2006), 217-238. (2006) Zbl1178.35006MR2272915
  13. Goyal, S., Sreenadh, K., 10.1007/s12044-015-0244-5, Proc. Indian Acad. Sci., Math. Sci. 125 (2015), 545-558. (2015) Zbl1332.35375MR3432207DOI10.1007/s12044-015-0244-5
  14. Kavian, O., Introduction à la Théorie des Points Critiques et Applications aux Problèmes Elliptiques, Mathématiques et Applications. Springer, Paris (1993). (1993) Zbl0797.58005MR1276944
  15. Krasnoselsk'ii, M. A., Topological Methods in the Theory of Nonlinear Integral Equations, International Series of Monographs on Pure and Applied Mathematics 45. Pergamon Press, Oxford; MacMillan, New York (1964). (1964) Zbl0111.30303MR0159197
  16. Bisci, G. Molica, Radulescu, V. D., Servadei, R., 10.1017/CBO9781316282397, Encyclopedia of Mathematics and its Applications 162. Cambridge University Press, Cambridge (2016). (2016) Zbl1356.49003MR3445279DOI10.1017/CBO9781316282397
  17. Ourraoui, A., 10.1016/j.crma.2014.01.015, C. R. Math., Acad. Sci. Paris 352 (2014), 295-298. (2014) Zbl1298.35096MR3186916DOI10.1016/j.crma.2014.01.015
  18. Peral, I., Multiplicity of solutions for the p -Laplacian, Second School of Nonlinear Functional Analysis and Applications to Differential Equations, ICTP, Trieste (1997). (1997) 
  19. Rabinowitz, P. H., 10.1090/cbms/065, CBMS Regional Conference Series in Mathematics 65. AMS, Providence (1984). (1984) Zbl0609.58002MR0845785DOI10.1090/cbms/065
  20. Servadei, R., Valdinoci, E., 10.1016/j.jmaa.2011.12.032, J. Math. Anal. Appl. 389 (2012), 887-898. (2012) Zbl1234.35291MR2879266DOI10.1016/j.jmaa.2011.12.032
  21. Servadei, R., Valdinoci, E., 10.1090/S0002-9947-2014-05884-4, Trans. Am. Math. Soc. 367 (2015), 67-102. (2015) Zbl1323.35202MR3271254DOI10.1090/S0002-9947-2014-05884-4
  22. Silvestre, L., 10.1002/cpa.20153, Commun. Pure Appl. Math. 60 (2007), 67-112. (2007) Zbl1141.49035MR2270163DOI10.1002/cpa.20153
  23. Wang, L., Zhang, B., Infinitely many solutions for Schrodinger-Kirchhoff type equations involving the fractional p -Laplacian and critical exponent, Electron. J. Differ. Equ. 2016 (2016), Paper No. 339, 18 pages. (2016) Zbl1353.35307MR3604784
  24. Zhang, L., Chen, Y., 10.1016/j.na.2016.12.001, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 151 (2017), 126-144. (2017) Zbl06675023MR3596674DOI10.1016/j.na.2016.12.001

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.