Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm

Cheng-Lin Liu; Fei Liu

Kybernetika (2018)

  • Volume: 54, Issue: 2, page 304-320
  • ISSN: 0023-5954

Abstract

top
This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part. In our proposed algorithm, a compensating delay is introduced to match the communication delay. Specially, the original high-order consensus is regained when the compensating delay equals to the communication delay, but cannot be achieved if the compensating delay is not equivalent to the communication delay. Moreover, sufficient consensus convergence conditions are also obtained for the agents under our predictor-based algorithm with different compensating delay. Numerical studies for multiple quadrotors illustrate the correctness of our results.

How to cite

top

Liu, Cheng-Lin, and Liu, Fei. "Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm." Kybernetika 54.2 (2018): 304-320. <http://eudml.org/doc/294217>.

@article{Liu2018,
abstract = {This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part. In our proposed algorithm, a compensating delay is introduced to match the communication delay. Specially, the original high-order consensus is regained when the compensating delay equals to the communication delay, but cannot be achieved if the compensating delay is not equivalent to the communication delay. Moreover, sufficient consensus convergence conditions are also obtained for the agents under our predictor-based algorithm with different compensating delay. Numerical studies for multiple quadrotors illustrate the correctness of our results.},
author = {Liu, Cheng-Lin, Liu, Fei},
journal = {Kybernetika},
keywords = {high-order multi-agent system; consensus; communication delay; predictor-based consensus algorithm; multiple quadrotors},
language = {eng},
number = {2},
pages = {304-320},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm},
url = {http://eudml.org/doc/294217},
volume = {54},
year = {2018},
}

TY - JOUR
AU - Liu, Cheng-Lin
AU - Liu, Fei
TI - Consensus seeking of delayed high-order multi-agent systems with predictor-based algorithm
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 304
EP - 320
AB - This paper investigates the high-order consensus problem for the multi-agent systems with agent's dynamics described by high-order integrator, and adopts a general consensus algorithm composed of the states' coordination control. Under communication delay, consensus algorithm in usual asynchronously-coupled form just can make the agents achieve a stationary consensus, and sufficient consensus condition is obtained based on frequency-domain analysis. Besides, a predictor-based consensus algorithm is constructed via multiplying the delayed neighboring agents' states by a delay-related compensation part. In our proposed algorithm, a compensating delay is introduced to match the communication delay. Specially, the original high-order consensus is regained when the compensating delay equals to the communication delay, but cannot be achieved if the compensating delay is not equivalent to the communication delay. Moreover, sufficient consensus convergence conditions are also obtained for the agents under our predictor-based algorithm with different compensating delay. Numerical studies for multiple quadrotors illustrate the correctness of our results.
LA - eng
KW - high-order multi-agent system; consensus; communication delay; predictor-based consensus algorithm; multiple quadrotors
UR - http://eudml.org/doc/294217
ER -

References

top
  1. Bresch-Pietri, D., Krstic, M., 10.1109/tac.2010.2050352, IEEE Trans. Autom. Control 55 (2010), 2106-2112. MR2722480DOI10.1109/tac.2010.2050352
  2. Cepeda-Gomez, R., Olgac, N., 10.1080/00207179.2013.829605, Int. J. Control 87 (2014), 291-300. MR3172506DOI10.1080/00207179.2013.829605
  3. Chamseddine, A., Zhang, Y., Rabbath, C. A., Trajectory planning and re-planning for fault tolerant formation flight control of quadrotor unmanned aerial vehicles 
  4. Cui, Y., Jia, Y., 10.1080/00207721.2012.724096, Int. J. Syst. Sci. 45 (2014), 427-438. MR3172823DOI10.1080/00207721.2012.724096
  5. He, W., Cao, J., 10.1049/iet-cta.2009.0191, IET Control Theory Appl. 5 (2011), 231-238. MR2807959DOI10.1049/iet-cta.2009.0191
  6. Hu, J., Hong, Y., 10.1016/j.physa.2006.08.015, Physica A 374 (2007), 853-863. DOI10.1016/j.physa.2006.08.015
  7. Huang, N., Duan, Z., Chen, G., 10.1016/j.automatica.2015.10.020, Automatica 63, 148-155. MR3429980DOI10.1016/j.automatica.2015.10.020
  8. Lin, Z., Francis, B., Maggiore, M., 10.1109/tac.2004.841121, IEEE Trans. Autom. Control 50 (2005), 121-127. MR2110819DOI10.1109/tac.2004.841121
  9. Li, S., Du, H., Lin, X., 10.1016/j.automatica.2011.02.045, Automatica 47 (2011), 1706-1712. Zbl1226.93014MR2886774DOI10.1016/j.automatica.2011.02.045
  10. Lin, P., Jia, Y., 10.1016/j.automatica.2009.05.002, Automatica 45 (2009), 2154-2158. MR2889282DOI10.1016/j.automatica.2009.05.002
  11. Lin, P., Li, Z., Jia, Y., Sun, M., 10.1049/iet-cta.2009.0649, IET Control Theory Appl. 5 (2011), 976-981. MR2850145DOI10.1049/iet-cta.2009.0649
  12. Liu, C.-L., Liu, F., 10.1016/j.automatica.2011.06.005, Automatica 47 (2011), 2130-2133. MR2886833DOI10.1016/j.automatica.2011.06.005
  13. Liu, C.-L., Liu, F., 10.1016/j.sysconle.2012.09.006, Syst. Control Lett. 61 (2012), 1235-1241. MR2998209DOI10.1016/j.sysconle.2012.09.006
  14. Liu, C.-L., Liu, F., 10.1007/s12555-012-0518-y, Int. J. Control Automat. Syst. 10 (2012), 1005-1012. DOI10.1007/s12555-012-0518-y
  15. Liu, Y., Jia, Y., 10.1002/rnc.1531, Int. J. Robust Nonlin. Control 20 (2010), 1579-1593. MR2724254DOI10.1002/rnc.1531
  16. Liu, C.-L., Tian, Y.-P., 10.1080/00207720902755762, Int. J. Syst. Sci. 40 (2009), 627-636. MR2541000DOI10.1080/00207720902755762
  17. Miao, G., Xun, S., Zou, Y., 10.1016/j.jfranklin.2012.10.015, J. Franklin Inst. 350 (2013), 244-257. MR3020296DOI10.1016/j.jfranklin.2012.10.015
  18. Munz, U., Papachristodoulou, A., Allgower, F., 10.1016/j.automatica.2010.04.008, Automatica 46 (2010), 1252-1265. MR2877237DOI10.1016/j.automatica.2010.04.008
  19. Olfati-Saber, R., Murray, R., 10.1109/tac.2004.834113, IEEE Trans. Autom. Control 49 (2004), 1520-1533. MR2086916DOI10.1109/tac.2004.834113
  20. Peng, J. M., Wang, J. N., Shan, J. Y., Robust cooperative output tracking of networked high-order power integrators systems., Int. J. Control, published online. MR3435198
  21. Qin, J., Yu, C., Hirche, S., 10.1109/tii.2012.2210430, IEEE Trans. Ind. Inf. 8(2012), 986-994. MR3306909DOI10.1109/tii.2012.2210430
  22. Ren, W., Moore, K., Chen, Y., 10.1109/icnsc.2006.1673189, In: Proc. IEEE International Conference on Networking Sensing and Control, Ft Lauderdale 2006, pp. 457-462. DOI10.1109/icnsc.2006.1673189
  23. Su, H., Chen, M. Z. Q., Wang, X., Lam, J., 10.1109/tie.2013.2275976, IEEE Trans. Ind. Electron. 61 (2014), 2842-2850. DOI10.1109/tie.2013.2275976
  24. Sun, Y., Wang, L., G, G. Xie, 10.1016/j.sysconle.2007.08.009, Syst. Control Lett. 57 (2008), 175-183. MR2378763DOI10.1016/j.sysconle.2007.08.009
  25. Tian, Y. P., Zhang, Y., 10.1016/j.automatica.2012.03.017, Automatica 48 (2012), 1205-1212. MR2917533DOI10.1016/j.automatica.2012.03.017
  26. Vicsek, T., Zafeiris, A., 10.1016/j.physrep.2012.03.004, Physics Rep. 517 (2012), 71-140. DOI10.1016/j.physrep.2012.03.004
  27. Wang, W., Slotine, J. J. E., 10.1109/tac.2006.872761, IEEE Trans. Autom. Control 51 (2006), 712-717. MR2228040DOI10.1109/tac.2006.872761
  28. Wang, Y., Wu, Q., Wang, Y., 10.1049/iet-cta.2013.0027, IET Control Theory Appl. 7 (2013), 1780-1792. MR3136623DOI10.1049/iet-cta.2013.0027
  29. Xi, J., Xu, Z., Liu, G., Zhong, Y., 10.1049/iet-cta.2012.0824, IET Control Theory Appl. 7 (2013), 975-984. MR3100353DOI10.1049/iet-cta.2012.0824
  30. Yang, B., 10.1155/2013/514823, Sci. World J. (2013), 514823. DOI10.1155/2013/514823
  31. Yang, W., Bertozzi, A. L., Wang, X. F., 10.1109/cdc.2008.4738951, In: Proc. 47th IEEE Conference on Decision and Control, Cancun 2008, pp. 2926-2931. DOI10.1109/cdc.2008.4738951
  32. Yang, T., Jin, Y. H., Wang, W., Shi, Y. J., 10.1088/1674-1056/20/2/020511, Chin. Phys. B 20 (2011), 020511. DOI10.1088/1674-1056/20/2/020511
  33. Yu, W., Chen, G., Cao, M., 10.1016/j.automatica.2010.03.006, Automatica 46 (2010), 1089-1095. MR2877192DOI10.1016/j.automatica.2010.03.006
  34. Yu, W., Chen, G., Ren, W., Kurths, J., Zheng, W., 10.1109/tcsi.2011.2106032, IEEE Trans. Circuits Syst. I Regul. Pap. 58 (2011), 1924-1932. MR2857624DOI10.1109/tcsi.2011.2106032
  35. Yu, Z., Jiang, H., Hu, C., Yu, J., 10.1080/00207179.2015.1015807, Int. J. Control 88 (2015), 1746-1756. MR3371084DOI10.1080/00207179.2015.1015807
  36. Yu, W., Zheng, W. X., Chen, G., Ren, W., Cao, J., 10.1016/j.automatica.2011.02.027, Automatica 47 (2011), 1496-1503. MR2889249DOI10.1016/j.automatica.2011.02.027
  37. Yu, W., Zhou, L., Yu, X., Lv, J., Lu, R., 10.1109/tii.2012.2235074, IEEE Trans. Ind. Inf. 9 (2013), 2137-2146. DOI10.1109/tii.2012.2235074
  38. Zhang, Q., Niu, Y., Wang, L., Shen, L., Zhu, H., 10.1007/s12555-011-0623-3, Int. J. Control Autom. Syst. 9 (2011), 1209-1218. DOI10.1007/s12555-011-0623-3
  39. Zhu, W., Cheng, D., 10.1016/j.automatica.2010.08.003, Automatica 46 (2010), 1994-1999. MR2878222DOI10.1016/j.automatica.2010.08.003
  40. Zhu, J., Yuan, L., 10.1016/j.laa.2013.11.017, Linear Algebra Appl. 443 (2014), 105-119. MR3148896DOI10.1016/j.laa.2013.11.017

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.