Some algebraic and homological properties of Lipschitz algebras and their second duals
F. Abtahi; E. Byabani; A. Rejali
Archivum Mathematicum (2019)
- Volume: 055, Issue: 4, page 211-224
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAbtahi, F., Byabani, E., and Rejali, A.. "Some algebraic and homological properties of Lipschitz algebras and their second duals." Archivum Mathematicum 055.4 (2019): 211-224. <http://eudml.org/doc/294220>.
@article{Abtahi2019,
abstract = {Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname\{Lip\}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.},
author = {Abtahi, F., Byabani, E., Rejali, A.},
journal = {Archivum Mathematicum},
keywords = {amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space},
language = {eng},
number = {4},
pages = {211-224},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some algebraic and homological properties of Lipschitz algebras and their second duals},
url = {http://eudml.org/doc/294220},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Abtahi, F.
AU - Byabani, E.
AU - Rejali, A.
TI - Some algebraic and homological properties of Lipschitz algebras and their second duals
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 4
SP - 211
EP - 224
AB - Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname{Lip}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.
LA - eng
KW - amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space
UR - http://eudml.org/doc/294220
ER -
References
top- Abtahi, F., Azizi, M., Rejali, A., 10.4153/CMB-2017-039-8, Canad. Math. Bull. 60 (4) (2017), 673–689. (2017) MR3710653DOI10.4153/CMB-2017-039-8
- Alaghmandan, M., Nasr Isfahani, R., Nemati, M., 10.1007/s00013-010-0177-2, Arch. Math. (Basel) 95 (2010), 373–379. (2010) MR2727314DOI10.1007/s00013-010-0177-2
- Bade, W.G., Curtis, Jr., P.C., Dales, H.G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (2) (1987), 359–377. (1987) Zbl0634.46042MR0896225
- Dales, H.G., Banach algebras and automatic continuity, London Math. Soc. Mono-graphs, vol. 24, Clarendon Press, Oxford, 2000. (2000) Zbl0981.46043MR1816726
- Dashti, M., Nasr Isfahani, R., Soltani Renani, S., 10.4153/CMB-2012-015-3, Canad. Math. Bull. 57 (1) (2014), 37–41. (2014) MR3150714DOI10.4153/CMB-2012-015-3
- Ghahramani, F., Zhang, Y., 10.1017/S0305004106009649, Math. Proc. Cambridge Philos. Soc. 142 (1) (2007), 111–123. (2007) MR2296395DOI10.1017/S0305004106009649
- Gourdeau, F., 10.1017/S0305004100067840, Math. Proc. Cambridge Philos. Soc. 105 (2) (1989), 351–355. (1989) MR0974991DOI10.1017/S0305004100067840
- Helemskii, A.Ya., The homology of Banach and topological algebras, Kluwer Academic Publishers Group, Dordrecht, 1989. (1989) MR1093462
- Hu, Z., Monfared, M.S., Traynor, T., 10.4064/sm193-1-3, Studia Math. 193 (1) (2009), 53–78. (2009) MR2506414DOI10.4064/sm193-1-3
- Johnson, B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., vol. 127, 1972, pp. iii+96 pp. (1972) Zbl0256.18014MR0374934
- Johnson, J.A., 10.1090/S0002-9947-1970-0415289-8, Trans. Amer. Math. Soc. 148 (1970), 147–169. (1970) MR0415289DOI10.1090/S0002-9947-1970-0415289-8
- Kaniuth, E., A course in commutative Banach algebras, Graduate Texts in Mathematics, Springer, New York, 2009. (2009) MR2458901
- Kaniuth, E., Lau, A.T., Pym, J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (1) (2008), 85–96. (2008) MR2388235DOI10.1017/S0305004107000874
- Loomis, L.H., An introduction to abstract harmonic analysi, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. (1953) MR0054173
- Monfared, M.S., 10.1017/S0305004108001126, Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 697–706. (2008) MR2418712DOI10.1017/S0305004108001126
- Runde, V., Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. (2002) Zbl0999.46022MR1874893
- Samei, E., Spronk, N., Stokke, R., 10.4153/CJM-2010-044-4, Canad. J. Math. 62 4) (2010), 845–869. (2010) MR2674704DOI10.4153/CJM-2010-044-4
- Sherbert, D.R., 10.2140/pjm.1963.13.1387, Pacific J. Math. 13 (1963), 1387–1399. (1963) Zbl0121.10203MR0156214DOI10.2140/pjm.1963.13.1387
- Sherbert, D.R., 10.1090/S0002-9947-1964-0161177-1, Trans. Amer. Math. Soc. 111 (1964), 240–272. (1964) Zbl0121.10204MR0161177DOI10.1090/S0002-9947-1964-0161177-1
- Zhang, Y., 10.4153/CMB-2001-050-7, Canad. Math. Bull. 44 (4) (2001), 504–508. (2001) Zbl1156.46306MR1863642DOI10.4153/CMB-2001-050-7
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.