Some algebraic and homological properties of Lipschitz algebras and their second duals

F. Abtahi; E. Byabani; A. Rejali

Archivum Mathematicum (2019)

  • Volume: 055, Issue: 4, page 211-224
  • ISSN: 0044-8753

Abstract

top
Let be a metric space and . We study homological properties and different types of amenability of Lipschitz algebras and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of . Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.

How to cite

top

Abtahi, F., Byabani, E., and Rejali, A.. "Some algebraic and homological properties of Lipschitz algebras and their second duals." Archivum Mathematicum 055.4 (2019): 211-224. <http://eudml.org/doc/294220>.

@article{Abtahi2019,
abstract = {Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname\{Lip\}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.},
author = {Abtahi, F., Byabani, E., Rejali, A.},
journal = {Archivum Mathematicum},
keywords = {amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space},
language = {eng},
number = {4},
pages = {211-224},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Some algebraic and homological properties of Lipschitz algebras and their second duals},
url = {http://eudml.org/doc/294220},
volume = {055},
year = {2019},
}

TY - JOUR
AU - Abtahi, F.
AU - Byabani, E.
AU - Rejali, A.
TI - Some algebraic and homological properties of Lipschitz algebras and their second duals
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 4
SP - 211
EP - 224
AB - Let $(X,d)$ be a metric space and $\alpha >0$. We study homological properties and different types of amenability of Lipschitz algebras $\operatorname{Lip}_\alpha X$ and their second duals. Precisely, we first provide some basic properties of Lipschitz algebras, which are important for metric geometry to know how metric properties are reflected in simple properties of Lipschitz functions. Then we show that all of these properties are equivalent to either uniform discreteness or finiteness of $X$. Finally, some results concerning the character space and Arens regularity of Lipschitz algebras are provided.
LA - eng
KW - amenability; Arens regularity; biprojectivity; biflatness; Lipschitz algebra; metric space
UR - http://eudml.org/doc/294220
ER -

References

top
  1. Abtahi, F., Azizi, M., Rejali, A., 10.4153/CMB-2017-039-8, Canad. Math. Bull. 60 (4) (2017), 673–689. (2017) MR3710653DOI10.4153/CMB-2017-039-8
  2. Alaghmandan, M., Nasr Isfahani, R., Nemati, M., 10.1007/s00013-010-0177-2, Arch. Math. (Basel) 95 (2010), 373–379. (2010) MR2727314DOI10.1007/s00013-010-0177-2
  3. Bade, W.G., Curtis, Jr., P.C., Dales, H.G., Amenability and weak amenability for Beurling and Lipschitz algebras, Proc. London Math. Soc. 55 (2) (1987), 359–377. (1987) Zbl0634.46042MR0896225
  4. Dales, H.G., Banach algebras and automatic continuity, London Math. Soc. Mono-graphs, vol. 24, Clarendon Press, Oxford, 2000. (2000) Zbl0981.46043MR1816726
  5. Dashti, M., Nasr Isfahani, R., Soltani Renani, S., 10.4153/CMB-2012-015-3, Canad. Math. Bull. 57 (1) (2014), 37–41. (2014) MR3150714DOI10.4153/CMB-2012-015-3
  6. Ghahramani, F., Zhang, Y., 10.1017/S0305004106009649, Math. Proc. Cambridge Philos. Soc. 142 (1) (2007), 111–123. (2007) MR2296395DOI10.1017/S0305004106009649
  7. Gourdeau, F., 10.1017/S0305004100067840, Math. Proc. Cambridge Philos. Soc. 105 (2) (1989), 351–355. (1989) MR0974991DOI10.1017/S0305004100067840
  8. Helemskii, A.Ya., The homology of Banach and topological algebras, Kluwer Academic Publishers Group, Dordrecht, 1989. (1989) MR1093462
  9. Hu, Z., Monfared, M.S., Traynor, T., 10.4064/sm193-1-3, Studia Math. 193 (1) (2009), 53–78. (2009) MR2506414DOI10.4064/sm193-1-3
  10. Johnson, B.E., Cohomology in Banach algebras, Mem. Amer. Math. Soc., vol. 127, 1972, pp. iii+96 pp. (1972) Zbl0256.18014MR0374934
  11. Johnson, J.A., 10.1090/S0002-9947-1970-0415289-8, Trans. Amer. Math. Soc. 148 (1970), 147–169. (1970) MR0415289DOI10.1090/S0002-9947-1970-0415289-8
  12. Kaniuth, E., A course in commutative Banach algebras, Graduate Texts in Mathematics, Springer, New York, 2009. (2009) MR2458901
  13. Kaniuth, E., Lau, A.T., Pym, J., 10.1017/S0305004107000874, Math. Proc. Cambridge Philos. Soc. 144 (1) (2008), 85–96. (2008) MR2388235DOI10.1017/S0305004107000874
  14. Loomis, L.H., An introduction to abstract harmonic analysi, D. Van Nostrand Company, Inc., Toronto-New York-London, 1953. (1953) MR0054173
  15. Monfared, M.S., 10.1017/S0305004108001126, Math. Proc. Cambridge Philos. Soc. 144 (3) (2008), 697–706. (2008) MR2418712DOI10.1017/S0305004108001126
  16. Runde, V., Lectures on amenability, Lecture Notes in Mathematics, vol. 1774, Springer-Verlag, Berlin, 2002. (2002) Zbl0999.46022MR1874893
  17. Samei, E., Spronk, N., Stokke, R., 10.4153/CJM-2010-044-4, Canad. J. Math. 62 4) (2010), 845–869. (2010) MR2674704DOI10.4153/CJM-2010-044-4
  18. Sherbert, D.R., 10.2140/pjm.1963.13.1387, Pacific J. Math. 13 (1963), 1387–1399. (1963) Zbl0121.10203MR0156214DOI10.2140/pjm.1963.13.1387
  19. Sherbert, D.R., 10.1090/S0002-9947-1964-0161177-1, Trans. Amer. Math. Soc. 111 (1964), 240–272. (1964) Zbl0121.10204MR0161177DOI10.1090/S0002-9947-1964-0161177-1
  20. Zhang, Y., 10.4153/CMB-2001-050-7, Canad. Math. Bull. 44 (4) (2001), 504–508. (2001) Zbl1156.46306MR1863642DOI10.4153/CMB-2001-050-7

NotesEmbed ?

top

You must be logged in to post comments.