The small Ree group and related graph
Alireza K. Asboei; Seyed S. S. Amiri
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 3, page 271-276
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topAsboei, Alireza K., and Amiri, Seyed S. S.. "The small Ree group $^{2}G_{2}(3^{2n+1})$ and related graph." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 271-276. <http://eudml.org/doc/294221>.
@article{Asboei2018,
abstract = {Let $G$ be a finite group. The main supergraph $\mathcal \{S\}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong ^\{2\}G_\{2\}(3^\{2n+1\})$ if and only if $\mathcal \{S\}(G)\cong \mathcal \{S\}(^\{2\}G_\{2\}(3^\{2n+1\}))$. As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group $^\{2\}G_\{2\}(3^\{2n+1\})$.},
author = {Asboei, Alireza K., Amiri, Seyed S. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {main supergraph; simple Ree group; Thompson's problem},
language = {eng},
number = {3},
pages = {271-276},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The small Ree group $^\{2\}G_\{2\}(3^\{2n+1\})$ and related graph},
url = {http://eudml.org/doc/294221},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Asboei, Alireza K.
AU - Amiri, Seyed S. S.
TI - The small Ree group $^{2}G_{2}(3^{2n+1})$ and related graph
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 271
EP - 276
AB - Let $G$ be a finite group. The main supergraph $\mathcal {S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong ^{2}G_{2}(3^{2n+1})$ if and only if $\mathcal {S}(G)\cong \mathcal {S}(^{2}G_{2}(3^{2n+1}))$. As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group $^{2}G_{2}(3^{2n+1})$.
LA - eng
KW - main supergraph; simple Ree group; Thompson's problem
UR - http://eudml.org/doc/294221
ER -
References
top- Asboei A. K., Amiri S. S. S., 10.1007/s13366-017-0360-8, Beitr. Algebra Geom. 59 (2018), no. 1, 21–24. MR3761396DOI10.1007/s13366-017-0360-8
- Asboei A. K., Amiri S. S. S., Some results on the main supergraph of finite groups, accepted in Algebra Discrete Math.
- Cameron P. J., 10.1515/jgt.2010.023, J. Group Theory 13 (2010), no. 6, 779–783. MR2736156DOI10.1515/jgt.2010.023
- Chakrabarty I., Ghosh S., Sen M. K., 10.1007/s00233-008-9132-y, Semigroup Forum 78 (2009), no. 3, 410–426. MR2511776DOI10.1007/s00233-008-9132-y
- Chen G. Y., On structure of Frobenius group and -Frobenius group, J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487 (Chinese).
- Ebrahimzadeh B., Iranmanesh A., Parvizi Mosaed H., A new characterization of Ree group by the order of group and the number of elements, Int. J. Group Theory 6 (2017), no. 4, 1–6. MR3695074
- Frobenius G., Verallgemeinerung des Sylow'schen Satzes, Berl. Ber. (1895), 981–993 (German).
- Hamzeh A., Ashrafi A. R., 10.1016/j.ejc.2016.09.005, European J. Combin. 60 (2017), 82–88. MR3567537DOI10.1016/j.ejc.2016.09.005
- Mazurov V. D., Khukhro E. I., Unsolved Problems in Group Theory, Kourovka Notebook, Novosibirsk, Inst. Mat. Sibirsk. Otdel. Akad., 2006. MR2263886
- Shi W.-J., A characterization of by their element orders, Xinan Shifan Daxue Xuebao Ziran Kexue Ban 25 (2000), no. 4, 353–360. MR1784865
- Ward H. N., On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62–89. MR0197587
- Weisner L., 10.1090/S0002-9904-1925-04087-2, Bull. Amer. Math. Soc. 31 (1925), no. 9–10, 492–496. MR1561103DOI10.1090/S0002-9904-1925-04087-2
- Williams J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), no. 2, 487–513. Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
- Wilson R. A., 10.1007/978-1-84800-988-2, Graduate Texts in Mathematics, 251, Springer, London, 2009. MR2562037DOI10.1007/978-1-84800-988-2
- Zhang Q., Shi W., Shen R., 10.1142/S0219498811004598, J. Algebra Appl. 10 (2011), no. 2, 309–317. MR2795740DOI10.1142/S0219498811004598
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.