The small Ree group 2 G 2 ( 3 2 n + 1 ) and related graph

Alireza K. Asboei; Seyed S. S. Amiri

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 3, page 271-276
  • ISSN: 0010-2628

Abstract

top
Let G be a finite group. The main supergraph 𝒮 ( G ) is a graph with vertex set G in which two vertices x and y are adjacent if and only if o ( x ) o ( y ) or o ( y ) o ( x ) . In this paper, we will show that G 2 G 2 ( 3 2 n + 1 ) if and only if 𝒮 ( G ) 𝒮 ( 2 G 2 ( 3 2 n + 1 ) ) . As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group 2 G 2 ( 3 2 n + 1 ) .

How to cite

top

Asboei, Alireza K., and Amiri, Seyed S. S.. "The small Ree group $^{2}G_{2}(3^{2n+1})$ and related graph." Commentationes Mathematicae Universitatis Carolinae 59.3 (2018): 271-276. <http://eudml.org/doc/294221>.

@article{Asboei2018,
abstract = {Let $G$ be a finite group. The main supergraph $\mathcal \{S\}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong ^\{2\}G_\{2\}(3^\{2n+1\})$ if and only if $\mathcal \{S\}(G)\cong \mathcal \{S\}(^\{2\}G_\{2\}(3^\{2n+1\}))$. As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group $^\{2\}G_\{2\}(3^\{2n+1\})$.},
author = {Asboei, Alireza K., Amiri, Seyed S. S.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {main supergraph; simple Ree group; Thompson's problem},
language = {eng},
number = {3},
pages = {271-276},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The small Ree group $^\{2\}G_\{2\}(3^\{2n+1\})$ and related graph},
url = {http://eudml.org/doc/294221},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Asboei, Alireza K.
AU - Amiri, Seyed S. S.
TI - The small Ree group $^{2}G_{2}(3^{2n+1})$ and related graph
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 3
SP - 271
EP - 276
AB - Let $G$ be a finite group. The main supergraph $\mathcal {S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong ^{2}G_{2}(3^{2n+1})$ if and only if $\mathcal {S}(G)\cong \mathcal {S}(^{2}G_{2}(3^{2n+1}))$. As a main consequence of our result we conclude that Thompson’s problem is true for the small Ree group $^{2}G_{2}(3^{2n+1})$.
LA - eng
KW - main supergraph; simple Ree group; Thompson's problem
UR - http://eudml.org/doc/294221
ER -

References

top
  1. Asboei A. K., Amiri S. S. S., 10.1007/s13366-017-0360-8, Beitr. Algebra Geom. 59 (2018), no. 1, 21–24. MR3761396DOI10.1007/s13366-017-0360-8
  2. Asboei A. K., Amiri S. S. S., Some results on the main supergraph of finite groups, accepted in Algebra Discrete Math. 
  3. Cameron P. J., 10.1515/jgt.2010.023, J. Group Theory 13 (2010), no. 6, 779–783. MR2736156DOI10.1515/jgt.2010.023
  4. Chakrabarty I., Ghosh S., Sen M. K., 10.1007/s00233-008-9132-y, Semigroup Forum 78 (2009), no. 3, 410–426. MR2511776DOI10.1007/s00233-008-9132-y
  5. Chen G. Y., On structure of Frobenius group and 2 -Frobenius group, J. Southwest China Normal Univ. 20 (1995), no. 5, 485–487 (Chinese). 
  6. Ebrahimzadeh B., Iranmanesh A., Parvizi Mosaed H., A new characterization of Ree group 2 G 2 ( q ) by the order of group and the number of elements, Int. J. Group Theory 6 (2017), no. 4, 1–6. MR3695074
  7. Frobenius G., Verallgemeinerung des Sylow'schen Satzes, Berl. Ber. (1895), 981–993 (German). 
  8. Hamzeh A., Ashrafi A. R., 10.1016/j.ejc.2016.09.005, European J. Combin. 60 (2017), 82–88. MR3567537DOI10.1016/j.ejc.2016.09.005
  9. Mazurov V. D., Khukhro E. I., Unsolved Problems in Group Theory, Kourovka Notebook, Novosibirsk, Inst. Mat. Sibirsk. Otdel. Akad., 2006. MR2263886
  10. Shi W.-J., A characterization of U 3 ( 2 n ) by their element orders, Xinan Shifan Daxue Xuebao Ziran Kexue Ban 25 (2000), no. 4, 353–360. MR1784865
  11. Ward H. N., On Ree's series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62–89. MR0197587
  12. Weisner L., 10.1090/S0002-9904-1925-04087-2, Bull. Amer. Math. Soc. 31 (1925), no. 9–10, 492–496. MR1561103DOI10.1090/S0002-9904-1925-04087-2
  13. Williams J. S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (1981), no. 2, 487–513. Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
  14. Wilson R. A., 10.1007/978-1-84800-988-2, Graduate Texts in Mathematics, 251, Springer, London, 2009. MR2562037DOI10.1007/978-1-84800-988-2
  15. Zhang Q., Shi W., Shen R., 10.1142/S0219498811004598, J. Algebra Appl. 10 (2011), no. 2, 309–317. MR2795740DOI10.1142/S0219498811004598

NotesEmbed ?

top

You must be logged in to post comments.