Recognizability of finite groups by Suzuki group
Alireza Khalili Asboei; Seyed Sadegh Salehi Amiri
Archivum Mathematicum (2019)
- Volume: 055, Issue: 4, page 225-228
- ISSN: 0044-8753
Access Full Article
topAbstract
topHow to cite
topAsboei, Alireza Khalili, and Amiri, Seyed Sadegh Salehi. "Recognizability of finite groups by Suzuki group." Archivum Mathematicum 055.4 (2019): 225-228. <http://eudml.org/doc/294366>.
@article{Asboei2019,
abstract = {Let $G$ be a finite group. The main supergraph $\mathcal \{S\}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong Sz(q)$ if and only if $\mathcal \{S\}(G)\cong \mathcal \{S\}(Sz(q))$, where $q=2^\{2m+1\}\ge 8$.},
author = {Asboei, Alireza Khalili, Amiri, Seyed Sadegh Salehi},
journal = {Archivum Mathematicum},
keywords = {main supergraph; Suzuki group},
language = {eng},
number = {4},
pages = {225-228},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {Recognizability of finite groups by Suzuki group},
url = {http://eudml.org/doc/294366},
volume = {055},
year = {2019},
}
TY - JOUR
AU - Asboei, Alireza Khalili
AU - Amiri, Seyed Sadegh Salehi
TI - Recognizability of finite groups by Suzuki group
JO - Archivum Mathematicum
PY - 2019
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 055
IS - 4
SP - 225
EP - 228
AB - Let $G$ be a finite group. The main supergraph $\mathcal {S}(G)$ is a graph with vertex set $G$ in which two vertices $x$ and $y$ are adjacent if and only if $o(x) \mid o(y)$ or $o(y)\mid o(x)$. In this paper, we will show that $G\cong Sz(q)$ if and only if $\mathcal {S}(G)\cong \mathcal {S}(Sz(q))$, where $q=2^{2m+1}\ge 8$.
LA - eng
KW - main supergraph; Suzuki group
UR - http://eudml.org/doc/294366
ER -
References
top- Alavi, H., Daneshkhah, A., Parvizi, H., Groups of the same type as Suzuki groups, Int. J. Group Theory 8 (1) (2019), 35–42. (2019) MR3953262
- Chen, G.Y., On Frobenius and -Frobenius group, J. Southwest China Normal Univ. 20 (1995), 485–487, in Chinese. (1995)
- Glauberman, G., Factorizations in local subgroups of finite groups, Regional Conference Series in Mathematics, no. 33, American Mathematical Society, Providence, R.I., 1977. (1977) MR0470072
- Hamzeh, A., Ashrafi, A.R., 10.1016/j.ejc.2016.09.005, European J. Combin. 60 (2017), 82–88. (2017) MR3567537DOI10.1016/j.ejc.2016.09.005
- Iranmanesh, A., Parvizi, H., Tehranian, A., 10.4134/BKMS.b140564, Bull. Korean Math. Soc. 53 (3) (2016), 651–656. (2016) MR3508660DOI10.4134/BKMS.b140564
- Khalili, A., Salehi, S.S., Some results on the main supergraph of finite groups, Accepted in Algebra Discrete Math.
- Khalili, A., Salehi, S.S., 10.1007/s13366-017-0360-8, Beitr. Algebra Geom. 59 (2018), 21–24. (2018) MR3761396DOI10.1007/s13366-017-0360-8
- Khalili, A., Salehi, S.S., The small Ree group and related graph, Comment. Math. Univ. Carolin. 59 (3) (2018), 271–276. (2018) MR3861551
- Mazurov, V.D., Khukhro, E.I., Unsolved problems in group theory, The Kourovka Notebook, (English version), ArXiv e-prints, (18), January 2014. Available at http://arxiv.org/abs/1401.0300v6. MR3408705
- Salehi, S.S., Khalili, A., Recognition of by the main supergraph, Accepted in Iran. J. Math. Sci. Inform.
- Shi, W.J., 10.1090/S0002-9939-1992-1074758-0, Proc. Amer. Math. Soc. 114 (3) (1992), 589–591. (1992) MR1074758DOI10.1090/S0002-9939-1992-1074758-0
- Williams, J.S., 10.1016/0021-8693(81)90218-0, J. Algebra 69 (2) (1981), 487–513. (1981) Zbl0471.20013MR0617092DOI10.1016/0021-8693(81)90218-0
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.