Nonuniqueness of implicit lattice Nagumo equation
Applications of Mathematics (2019)
- Volume: 64, Issue: 2, page 169-194
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topStehlík, Petr, and Volek, Jonáš. "Nonuniqueness of implicit lattice Nagumo equation." Applications of Mathematics 64.2 (2019): 169-194. <http://eudml.org/doc/294225>.
@article{Stehlík2019,
abstract = {We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories.},
author = {Stehlík, Petr, Volek, Jonáš},
journal = {Applications of Mathematics},
keywords = {reaction-diffusion equation; lattice differential equation; nonlinear algebraic problem; variational method; implicit discretization},
language = {eng},
number = {2},
pages = {169-194},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Nonuniqueness of implicit lattice Nagumo equation},
url = {http://eudml.org/doc/294225},
volume = {64},
year = {2019},
}
TY - JOUR
AU - Stehlík, Petr
AU - Volek, Jonáš
TI - Nonuniqueness of implicit lattice Nagumo equation
JO - Applications of Mathematics
PY - 2019
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 64
IS - 2
SP - 169
EP - 194
AB - We consider the implicit discretization of Nagumo equation on finite lattices and show that its variational formulation corresponds in various parameter settings to convex, mountain-pass or saddle-point geometries. Consequently, we are able to derive conditions under which the implicit discretization yields multiple solutions. Interestingly, for certain parameters we show nonuniqueness for arbitrarily small discretization steps. Finally, we provide a simple example showing that the nonuniqueness can lead to complex dynamics in which the number of bounded solutions grows exponentially in time iterations, which in turn implies infinite number of global trajectories.
LA - eng
KW - reaction-diffusion equation; lattice differential equation; nonlinear algebraic problem; variational method; implicit discretization
UR - http://eudml.org/doc/294225
ER -
References
top- Allaire, G., Kaber, S. M., 10.1007/978-0-387-68918-0, Texts in Applied Mathematics 55, Springer, New York (2008). (2008) Zbl1135.65014MR2365296DOI10.1007/978-0-387-68918-0
- Allen, L. J. S., 10.1007/BF00275506, J. Math. Biol. 24 (1987), 617-625. (1987) Zbl0603.92019MR0880448DOI10.1007/BF00275506
- Ambrosetti, A., Rabinowitz, P. H., 10.1016/0022-1236(73)90051-7, J. Funct. Anal. 14 (1973), 349-381. (1973) Zbl0273.49063MR0370183DOI10.1016/0022-1236(73)90051-7
- Aronson, D. G., Weinberger, H. F., 10.1007/bfb0070595, Partial Differential Equations and Related Topics 1974 Lecture Notes in Mathematics 446, Springer, Berlin (1975), 5-49. (1975) Zbl0325.35050MR0427837DOI10.1007/bfb0070595
- Chow, S.-N., Mallet-Paret, J., Shen, W., 10.1006/jdeq.1998.3478, J. Differ. Equations 149 (1998), 248-291. (1998) Zbl0911.34050MR1646240DOI10.1006/jdeq.1998.3478
- Chow, S.-N., Shen, W. X., 10.1137/S0036139994261757, SIAM J. Appl. Math. 55 (1995), 1764-1781. (1995) Zbl0840.34012MR1358800DOI10.1137/S0036139994261757
- Chua, L. O., Yang, L., 10.1109/31.7601, IEEE Trans. Circuits Syst. 35 (1988), 1273-1290. (1988) MR0960778DOI10.1109/31.7601
- Clark, D. C., 10.1512/iumj.1972.22.22008, Indiana Univ. Math. J. 22 (1972), 65-74. (1972) Zbl0228.58006MR0296777DOI10.1512/iumj.1972.22.22008
- Drábek, P., Milota, J., 10.1007/978-3-0348-0387-8, Birkhäuser Advanced Texts Basler Lehrbücher, Springer, Basel (2013). (2013) Zbl1264.35001MR3025694DOI10.1007/978-3-0348-0387-8
- Fife, P. C., McLeod, J. B., 10.1007/BF00250432, Arch. Ration. Mech. Anal. 65 (1977), 335-361. (1977) Zbl0361.35035MR0442480DOI10.1007/BF00250432
- Galewski, M., Smejda, J., 10.1016/j.cam.2009.11.044, J. Comput. Appl. Math. 233 (2010), 2985-2993. (2010) Zbl1187.39006MR2592272DOI10.1016/j.cam.2009.11.044
- Hupkes, H. J., Vleck, E. S. Van, 10.1137/120880628, SIAM J. Math. Anal. 45 (2013), 1068-1135. (2013) Zbl1301.34098MR3049651DOI10.1137/120880628
- Hupkes, H. J., Vleck, E. S. Van, 10.1007/s10884-014-9423-9, J. Dyn. Differ. Equations 28 (2016), 955-1006. (2016) Zbl1353.34094MR3537361DOI10.1007/s10884-014-9423-9
- Keener, J. P., 10.1137/0147038, SIAM J. Appl. Math. 47 (1987), 556-572. (1987) Zbl0649.34019MR0889639DOI10.1137/0147038
- Mallet-Paret, J., 10.1023/A:1021841618074, J. Dyn. Differ. Equations 11 (1999), 49-127. (1999) Zbl0921.34046MR1680459DOI10.1023/A:1021841618074
- Bisci, G. Molica, Repovš, D., 10.1515/anona-2012-0028, Adv. Nonlinear Anal. 2 (2013), 127-146. (2013) Zbl1273.39003MR3055530DOI10.1515/anona-2012-0028
- Nagumo, J., Arimoto, S., Yoshizawa, S., 10.1109/jrproc.1962.288235, Proc. IRE 50 (1962), 2061-2070. (1962) DOI10.1109/jrproc.1962.288235
- Otta, J., Stehlík, P., Multiplicity of solutions for discrete problems with double-well potentials, Electron. J. Differ. Equ. 2013 (2013), 14 pages. (2013) Zbl1287.39008MR3104962
- Pötzsche, C., 10.1007/978-3-642-14258-1, Lecture Notes in Mathematics 2002, Springer, Berlin (2010). (2010) Zbl1247.37003MR2680867DOI10.1007/978-3-642-14258-1
- Rabinowitz, P. H., 10.1016/b978-0-12-165550-1.50016-1, Nonlinear Analysis Academic Press, New York (1978), 161-177. (1978) Zbl0466.58015MR0501092DOI10.1016/b978-0-12-165550-1.50016-1
- Rabinowitz, P. H., 10.1090/cbms/065, CBMS Regional Conference Series in Mathematics 65, American Mathematical Society, Providence (1986). (1986) Zbl0609.58002MR0845785DOI10.1090/cbms/065
- Slavík, A., 10.1016/j.jde.2017.08.019, J. Differ. Equations 263 (2017), 7601-7626. (2017) Zbl06782926MR3705693DOI10.1016/j.jde.2017.08.019
- Slavík, A., Stehlík, P., 10.1016/j.jmaa.2015.02.056, J. Math. Anal. Appl. 427 (2015), 525-545. (2015) Zbl1338.35449MR3318214DOI10.1016/j.jmaa.2015.02.056
- Stehlík, P., 10.1016/j.jmaa.2017.06.075, J. Math. Anal. Appl. 455 (2017), 1749-1764. (2017) Zbl06759300MR3671252DOI10.1016/j.jmaa.2017.06.075
- Stehlík, P., Volek, J., 10.1155/2015/791304, Discrete Dyn. Nat. Soc. 2015 (2015), Article ID 791304, 13 pages. (2015) MR3407064DOI10.1155/2015/791304
- Stehlík, P., Volek, J., 10.1016/j.jmaa.2016.02.009, J. Math. Anal. Appl. 438 (2016), 643-656. (2016) Zbl1334.35134MR3466056DOI10.1016/j.jmaa.2016.02.009
- Volek, J., 10.1080/10236198.2016.1234617, J. Difference Equ. Appl. 22 (2016), 1698-1719. (2016) Zbl1361.39003MR3590409DOI10.1080/10236198.2016.1234617
- Volek, J., 10.1016/j.na.2018.01.008, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 170 (2018), 238-257. (2018) Zbl1386.49006MR3765563DOI10.1016/j.na.2018.01.008
- Zinner, B., 10.1016/0022-0396(92)90142-A, J. Differ. Equations 96 (1992), 1-27. (1992) Zbl0752.34007MR1153307DOI10.1016/0022-0396(92)90142-A
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.