When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
Atossa Parsapour; Khadijeh Ahmad Javaheri
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 19-34
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topParsapour, Atossa, and Ahmad Javaheri, Khadijeh. "When a line graph associated to annihilating-ideal graph of a lattice is planar or projective." Czechoslovak Mathematical Journal 68.1 (2018): 19-34. <http://eudml.org/doc/294241>.
@article{Parsapour2018,
abstract = {Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb \{A\} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak \{L\}(\mathbb \{A\} G(L))$, is a planar or projective graph.},
author = {Parsapour, Atossa, Ahmad Javaheri, Khadijeh},
journal = {Czechoslovak Mathematical Journal},
keywords = {annihilating-ideal graph; lattice; line graph; planar graph; projective graph},
language = {eng},
number = {1},
pages = {19-34},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {When a line graph associated to annihilating-ideal graph of a lattice is planar or projective},
url = {http://eudml.org/doc/294241},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Parsapour, Atossa
AU - Ahmad Javaheri, Khadijeh
TI - When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 19
EP - 34
AB - Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb {A} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak {L}(\mathbb {A} G(L))$, is a planar or projective graph.
LA - eng
KW - annihilating-ideal graph; lattice; line graph; planar graph; projective graph
UR - http://eudml.org/doc/294241
ER -
References
top- Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F., 10.1515/gmj-2015-0031, Georgian Math. J. 23 (2016), 1-7. (2016) Zbl1332.05067MR3466579DOI10.1515/gmj-2015-0031
- Anderson, D. F., Axtell, M. C., Stickles, J. A., 10.1007/978-1-4419-6990-3_2, Commutative Algebra, Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. (2011) Zbl1225.13002MR2762487DOI10.1007/978-1-4419-6990-3_2
- Archdeacon, D., 10.1002/jgt.3190050305, J. Graph Theory 5 (1981), 243-246. (1981) Zbl0464.05028MR0625065DOI10.1002/jgt.3190050305
- Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
- Behboodi, M., Rakeei, Z., 10.1142/S0219498811004896, J. Algebra Appl. 10 (2011), 727-739. (2011) Zbl1276.13002MR2834112DOI10.1142/S0219498811004896
- Behboodi, M., Rakeei, Z., 10.1142/S0219498811004902, J. Algebra Appl. 10 (2011), 741-753. (2011) Zbl1276.13003MR2834113DOI10.1142/S0219498811004902
- Bondy, J. A., Murty, U. S. R., 10.1007/978-1-349-03521-2, American Elsevier Publishing, New York (1976). (1976) Zbl1226.05083MR0411988DOI10.1007/978-1-349-03521-2
- Bouchet, A., 10.1016/0095-8956(78)90073-4, J. Comb. Theory, Ser. B 24 (1978), 24-33. (1978) Zbl0311.05104MR0479731DOI10.1016/0095-8956(78)90073-4
- Chiang-Hsieh, H.-J., Lee, P.-F., Wang, H.-J., 10.1007/s11856-010-0101-2, Isr. J. Math. 180 (2010), 193-222. (2010) Zbl1207.13005MR2735063DOI10.1007/s11856-010-0101-2
- Davey, B. A., Priestley, H. A., 10.1017/CBO9780511809088, Cambridge University Press, Cambridge (2002). (2002) Zbl1002.06001MR1902334DOI10.1017/CBO9780511809088
- Glover, H. H., Huneke, J. P., Wang, C. S., 10.1016/0095-8956(79)90022-4, J. Comb. Theory, Ser. B 27 (1979), 332-370. (1979) Zbl0352.05027MR0554298DOI10.1016/0095-8956(79)90022-4
- Godsil, C., Royle, G., 10.1007/978-1-4613-0163-9, Graduate Texts in Mathematics 207, Springer, New York (2001). (2001) Zbl0968.05002MR1829620DOI10.1007/978-1-4613-0163-9
- Khashyarmanesh, K., Khorsandi, M. R., 10.1216/RMJ-2013-43-4-1207, Rocky Mt. J. Math. 43 (2013), 1207-1213. (2013) Zbl1284.13034MR3105318DOI10.1216/RMJ-2013-43-4-1207
- Massey, W. S., Algebraic Topology: An Introduction, Graduate Texts in Mathematics 56, Springer, New York (1977). (1977) Zbl0361.55002MR0448331
- Nation, J. B., Notes on Lattice Theory, (1991)--2009. Available at http://www.math.hawaii.edu/ {jb/books.html}.
- Ringel, G., 10.1007/978-3-642-65759-7, Die Grundlehren der mathematischen Wissenschaften 209, Springer, Berlin (1974). (1974) Zbl0287.05102MR0349461DOI10.1007/978-3-642-65759-7
- Roth, J., Myrvold, W., Simpler projective plane embedding, Ars Comb. 75 (2005), 135-155. (2005) Zbl1072.05045MR2133216
- Sedláček, J., Some properties of interchange graphs, Theory Graphs Appl Proc. Symp. Smolenice, 1963, Czechoslovak Acad. Sci., Praha (1964), 145-150. (1964) Zbl0156.44202MR0173255
- White, A. T., Graphs, Groups and Surfaces, North-Holland Mathematics Studies 8, North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). (1973) Zbl0268.05102MR0340026
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.