When a line graph associated to annihilating-ideal graph of a lattice is planar or projective

Atossa Parsapour; Khadijeh Ahmad Javaheri

Czechoslovak Mathematical Journal (2018)

  • Volume: 68, Issue: 1, page 19-34
  • ISSN: 0011-4642

Abstract

top
Let ( L , , ) be a finite lattice with a least element 0. 𝔸 G ( L ) is an annihilating-ideal graph of L in which the vertex set is the set of all nontrivial ideals of L , and two distinct vertices I and J are adjacent if and only if I J = 0 . We completely characterize all finite lattices L whose line graph associated to an annihilating-ideal graph, denoted by 𝔏 ( 𝔸 G ( L ) ) , is a planar or projective graph.

How to cite

top

Parsapour, Atossa, and Ahmad Javaheri, Khadijeh. "When a line graph associated to annihilating-ideal graph of a lattice is planar or projective." Czechoslovak Mathematical Journal 68.1 (2018): 19-34. <http://eudml.org/doc/294241>.

@article{Parsapour2018,
abstract = {Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb \{A\} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak \{L\}(\mathbb \{A\} G(L))$, is a planar or projective graph.},
author = {Parsapour, Atossa, Ahmad Javaheri, Khadijeh},
journal = {Czechoslovak Mathematical Journal},
keywords = {annihilating-ideal graph; lattice; line graph; planar graph; projective graph},
language = {eng},
number = {1},
pages = {19-34},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {When a line graph associated to annihilating-ideal graph of a lattice is planar or projective},
url = {http://eudml.org/doc/294241},
volume = {68},
year = {2018},
}

TY - JOUR
AU - Parsapour, Atossa
AU - Ahmad Javaheri, Khadijeh
TI - When a line graph associated to annihilating-ideal graph of a lattice is planar or projective
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 19
EP - 34
AB - Let $(L,\wedge ,\vee )$ be a finite lattice with a least element 0. $\mathbb {A} G(L)$ is an annihilating-ideal graph of $L$ in which the vertex set is the set of all nontrivial ideals of $L$, and two distinct vertices $I$ and $J$ are adjacent if and only if $I \wedge J=0$. We completely characterize all finite lattices $L$ whose line graph associated to an annihilating-ideal graph, denoted by $\mathfrak {L}(\mathbb {A} G(L))$, is a planar or projective graph.
LA - eng
KW - annihilating-ideal graph; lattice; line graph; planar graph; projective graph
UR - http://eudml.org/doc/294241
ER -

References

top
  1. Afkhami, M., Bahrami, S., Khashyarmanesh, K., Shahsavar, F., 10.1515/gmj-2015-0031, Georgian Math. J. 23 (2016), 1-7. (2016) Zbl1332.05067MR3466579DOI10.1515/gmj-2015-0031
  2. Anderson, D. F., Axtell, M. C., Stickles, J. A., 10.1007/978-1-4419-6990-3_2, Commutative Algebra, Noetherian and Non-Noetherian Perspectives M. Fontana et al. Springer, New York (2011), 23-45. (2011) Zbl1225.13002MR2762487DOI10.1007/978-1-4419-6990-3_2
  3. Archdeacon, D., 10.1002/jgt.3190050305, J. Graph Theory 5 (1981), 243-246. (1981) Zbl0464.05028MR0625065DOI10.1002/jgt.3190050305
  4. Beck, I., 10.1016/0021-8693(88)90202-5, J. Algebra 116 (1988), 208-226. (1988) Zbl0654.13001MR0944156DOI10.1016/0021-8693(88)90202-5
  5. Behboodi, M., Rakeei, Z., 10.1142/S0219498811004896, J. Algebra Appl. 10 (2011), 727-739. (2011) Zbl1276.13002MR2834112DOI10.1142/S0219498811004896
  6. Behboodi, M., Rakeei, Z., 10.1142/S0219498811004902, J. Algebra Appl. 10 (2011), 741-753. (2011) Zbl1276.13003MR2834113DOI10.1142/S0219498811004902
  7. Bondy, J. A., Murty, U. S. R., 10.1007/978-1-349-03521-2, American Elsevier Publishing, New York (1976). (1976) Zbl1226.05083MR0411988DOI10.1007/978-1-349-03521-2
  8. Bouchet, A., 10.1016/0095-8956(78)90073-4, J. Comb. Theory, Ser. B 24 (1978), 24-33. (1978) Zbl0311.05104MR0479731DOI10.1016/0095-8956(78)90073-4
  9. Chiang-Hsieh, H.-J., Lee, P.-F., Wang, H.-J., 10.1007/s11856-010-0101-2, Isr. J. Math. 180 (2010), 193-222. (2010) Zbl1207.13005MR2735063DOI10.1007/s11856-010-0101-2
  10. Davey, B. A., Priestley, H. A., 10.1017/CBO9780511809088, Cambridge University Press, Cambridge (2002). (2002) Zbl1002.06001MR1902334DOI10.1017/CBO9780511809088
  11. Glover, H. H., Huneke, J. P., Wang, C. S., 10.1016/0095-8956(79)90022-4, J. Comb. Theory, Ser. B 27 (1979), 332-370. (1979) Zbl0352.05027MR0554298DOI10.1016/0095-8956(79)90022-4
  12. Godsil, C., Royle, G., 10.1007/978-1-4613-0163-9, Graduate Texts in Mathematics 207, Springer, New York (2001). (2001) Zbl0968.05002MR1829620DOI10.1007/978-1-4613-0163-9
  13. Khashyarmanesh, K., Khorsandi, M. R., 10.1216/RMJ-2013-43-4-1207, Rocky Mt. J. Math. 43 (2013), 1207-1213. (2013) Zbl1284.13034MR3105318DOI10.1216/RMJ-2013-43-4-1207
  14. Massey, W. S., Algebraic Topology: An Introduction, Graduate Texts in Mathematics 56, Springer, New York (1977). (1977) Zbl0361.55002MR0448331
  15. Nation, J. B., Notes on Lattice Theory, (1991)--2009. Available at http://www.math.hawaii.edu/ {jb/books.html}. 
  16. Ringel, G., 10.1007/978-3-642-65759-7, Die Grundlehren der mathematischen Wissenschaften 209, Springer, Berlin (1974). (1974) Zbl0287.05102MR0349461DOI10.1007/978-3-642-65759-7
  17. Roth, J., Myrvold, W., Simpler projective plane embedding, Ars Comb. 75 (2005), 135-155. (2005) Zbl1072.05045MR2133216
  18. Sedláček, J., Some properties of interchange graphs, Theory Graphs Appl Proc. Symp. Smolenice, 1963, Czechoslovak Acad. Sci., Praha (1964), 145-150. (1964) Zbl0156.44202MR0173255
  19. White, A. T., Graphs, Groups and Surfaces, North-Holland Mathematics Studies 8, North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). (1973) Zbl0268.05102MR0340026

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.