Generalized versions of Ilmanen lemma: Insertion of or functions
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 2, page 223-231
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKryštof, Václav. "Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega } $ or $ C^{1,\omega }_{{\rm loc}} $ functions." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 223-231. <http://eudml.org/doc/294261>.
@article{Kryštof2018,
abstract = {We prove that for a normed linear space $ X $, if $ f_1\colon X\rightarrow \mathbb \{R\} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\rightarrow \mathbb \{R\} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\le f_2 $, then there exists $ f\in C^\{1,\omega \}(X) $ such that $ f_1\le f\le f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega (t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^\{1,\omega \}_\{\{loc\}\} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.},
author = {Kryštof, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ilmanen lemma; $ C^\{1,\omega \} $ function; semiconvex function with general modulus},
language = {eng},
number = {2},
pages = {223-231},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generalized versions of Ilmanen lemma: Insertion of $ C^\{1,\omega \} $ or $ C^\{1,\omega \}_\{\{\rm loc\}\} $ functions},
url = {http://eudml.org/doc/294261},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Kryštof, Václav
TI - Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega } $ or $ C^{1,\omega }_{{\rm loc}} $ functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 223
EP - 231
AB - We prove that for a normed linear space $ X $, if $ f_1\colon X\rightarrow \mathbb {R} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\rightarrow \mathbb {R} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\le f_2 $, then there exists $ f\in C^{1,\omega }(X) $ such that $ f_1\le f\le f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega (t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^{1,\omega }_{{loc}} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.
LA - eng
KW - Ilmanen lemma; $ C^{1,\omega } $ function; semiconvex function with general modulus
UR - http://eudml.org/doc/294261
ER -
References
top- Bernard P., 10.4171/RSMUP/124-15, Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229. MR2752687DOI10.4171/RSMUP/124-15
- Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
- Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178, Springer, New York, 1998. MR1488695
- Duda J., Zajíček L., Semiconvex functions: representations as suprema of smooth functions and extensions, J. Convex Anal. 16 (2009), no. 1, 239–260. MR2531202
- Duda J., Zajíček L., Smallness of singular sets of semiconvex functions in separable Banach spaces, J. Convex Anal. 20 (2013), no. 2, 573–598. MR3098482
- Fathi A., Figalli A., 10.1007/s11856-010-0001-5, Israel J. Math. 175 (2010), 1–59. MR2607536DOI10.1007/s11856-010-0001-5
- Fathi A., Zavidovique M., 10.4171/RSMUP/124-14, Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219. MR2752686DOI10.4171/RSMUP/124-14
- Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl1329.00102MR3244144
- Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204. MR1216585
- Jourani A., Thibault L., Zagrodny D., 10.1112/plms/pdr062, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223. MR2948792DOI10.1112/plms/pdr062
- Koc M., Kolář J., 10.1016/j.jmaa.2016.11.080, J. Math. Anal. Appl. 449 (2017), no. 1, 343–367. MR3595207DOI10.1016/j.jmaa.2016.11.080
- Kryštof V., Semiconvex Functions and Their Differences, Master Thesis, Charles University, Praha, 2016 (Czech).
- Rolewicz S., On -paraconvex and strongly -paraconvex functions, Control Cybernet. 29 (2000), no. 1, 367–377. MR1775171
- Rolewicz S., 10.1080/02331930108844568, Optimization 50 (2001), no. 5–6, 353–360. MR1892909DOI10.1080/02331930108844568
- Toruńczyk H., 10.4064/sm-46-1-43-51, Studia Math. 46 (1973), 43–51. MR0339255DOI10.4064/sm-46-1-43-51
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.