Generalized versions of Ilmanen lemma: Insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 2, page 223-231
  • ISSN: 0010-2628

Abstract

top
We prove that for a normed linear space X , if f 1 : X is continuous and semiconvex with modulus ω , f 2 : X is continuous and semiconcave with modulus ω and f 1 f 2 , then there exists f C 1 , ω ( X ) such that f 1 f f 2 . Using this result we prove a generalization of Ilmanen lemma (which deals with the case ω ( t ) = t ) to the case of an arbitrary nontrivial modulus ω . This generalization (where a C l o c 1 , ω function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.

How to cite

top

Kryštof, Václav. "Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega } $ or $ C^{1,\omega }_{{\rm loc}} $ functions." Commentationes Mathematicae Universitatis Carolinae 59.2 (2018): 223-231. <http://eudml.org/doc/294261>.

@article{Kryštof2018,
abstract = {We prove that for a normed linear space $ X $, if $ f_1\colon X\rightarrow \mathbb \{R\} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\rightarrow \mathbb \{R\} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\le f_2 $, then there exists $ f\in C^\{1,\omega \}(X) $ such that $ f_1\le f\le f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega (t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^\{1,\omega \}_\{\{loc\}\} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.},
author = {Kryštof, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ilmanen lemma; $ C^\{1,\omega \} $ function; semiconvex function with general modulus},
language = {eng},
number = {2},
pages = {223-231},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Generalized versions of Ilmanen lemma: Insertion of $ C^\{1,\omega \} $ or $ C^\{1,\omega \}_\{\{\rm loc\}\} $ functions},
url = {http://eudml.org/doc/294261},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Kryštof, Václav
TI - Generalized versions of Ilmanen lemma: Insertion of $ C^{1,\omega } $ or $ C^{1,\omega }_{{\rm loc}} $ functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 2
SP - 223
EP - 231
AB - We prove that for a normed linear space $ X $, if $ f_1\colon X\rightarrow \mathbb {R} $ is continuous and semiconvex with modulus $ \omega $, $ f_2\colon X\rightarrow \mathbb {R} $ is continuous and semiconcave with modulus $ \omega $ and $f_1\le f_2 $, then there exists $ f\in C^{1,\omega }(X) $ such that $ f_1\le f\le f_2 $. Using this result we prove a generalization of Ilmanen lemma (which deals with the case $ \omega (t)=t $) to the case of an arbitrary nontrivial modulus $ \omega $. This generalization (where a $ C^{1,\omega }_{{loc}} $ function is inserted) gives a positive answer to a problem formulated by A. Fathi and M. Zavidovique in 2010.
LA - eng
KW - Ilmanen lemma; $ C^{1,\omega } $ function; semiconvex function with general modulus
UR - http://eudml.org/doc/294261
ER -

References

top
  1. Bernard P., 10.4171/RSMUP/124-15, Rend. Semin. Mat. Univ. Padova 124 (2010), 221–229. MR2752687DOI10.4171/RSMUP/124-15
  2. Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. Zbl1095.49003MR2041617
  3. Clarke F. H., Ledyaev Yu. S., Stern R. J., Wolenski P. R., Nonsmooth Analysis and Control Theory, Graduate Texts in Mathematics, 178, Springer, New York, 1998. MR1488695
  4. Duda J., Zajíček L., Semiconvex functions: representations as suprema of smooth functions and extensions, J. Convex Anal. 16 (2009), no. 1, 239–260. MR2531202
  5. Duda J., Zajíček L., Smallness of singular sets of semiconvex functions in separable Banach spaces, J. Convex Anal. 20 (2013), no. 2, 573–598. MR3098482
  6. Fathi A., Figalli A., 10.1007/s11856-010-0001-5, Israel J. Math. 175 (2010), 1–59. MR2607536DOI10.1007/s11856-010-0001-5
  7. Fathi A., Zavidovique M., 10.4171/RSMUP/124-14, Rend. Semin. Mat. Univ. Padova 124 (2010), 203–219. MR2752686DOI10.4171/RSMUP/124-14
  8. Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl1329.00102MR3244144
  9. Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential Equations on Manifolds (Los Angeles, CA, 1990), Proc. Sympos. Pure Math., 54, Part 1, Amer. Math. Soc., Providence, 1993, pp. 193–204. MR1216585
  10. Jourani A., Thibault L., Zagrodny D., 10.1112/plms/pdr062, Proc. Lond. Math. Soc. (3) 105 (2012), no. 1, 189–223. MR2948792DOI10.1112/plms/pdr062
  11. Koc M., Kolář J., 10.1016/j.jmaa.2016.11.080, J. Math. Anal. Appl. 449 (2017), no. 1, 343–367. MR3595207DOI10.1016/j.jmaa.2016.11.080
  12. Kryštof V., Semiconvex Functions and Their Differences, Master Thesis, Charles University, Praha, 2016 (Czech). 
  13. Rolewicz S., On α ( · ) -paraconvex and strongly α ( · ) -paraconvex functions, Control Cybernet. 29 (2000), no. 1, 367–377. MR1775171
  14. Rolewicz S., 10.1080/02331930108844568, Optimization 50 (2001), no. 5–6, 353–360. MR1892909DOI10.1080/02331930108844568
  15. Toruńczyk H., 10.4064/sm-46-1-43-51, Studia Math. 46 (1973), 43–51. MR0339255DOI10.4064/sm-46-1-43-51

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.