Further generalized versions of Ilmanen’s lemma on insertion of or functions
Commentationes Mathematicae Universitatis Carolinae (2021)
- Volume: 62, Issue: 4, page 445-455
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topKryštof, Václav. "Further generalized versions of Ilmanen’s lemma on insertion of $C^{1,\omega }$ or $C^{1,\omega }_{\text{\rm loc}}$ functions." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 445-455. <http://eudml.org/doc/298292>.
@article{Kryštof2021,
abstract = {The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\rightarrow \mathbb \{R\} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\le f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^\{1,\omega \}_\{\text\{loc\}\}(G) $ such that $ f_1\le f\le f_2 $. This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of $ \mathbb \{R\}^\{n\} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in [2,\infty ) $. We also prove a “global" version of Ilmanen’s lemma (where a $ C^\{1,\omega \} $ function is inserted between functions on an interval $ I\subset \mathbb \{R\} $).},
author = {Kryštof, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ilmanen’s lemma; $ C^\{1,\omega \} $ function; semiconvex function with general modulus},
language = {eng},
number = {4},
pages = {445-455},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Further generalized versions of Ilmanen’s lemma on insertion of $C^\{1,\omega \}$ or $C^\{1,\omega \}_\{\text\{\rm loc\}\}$ functions},
url = {http://eudml.org/doc/298292},
volume = {62},
year = {2021},
}
TY - JOUR
AU - Kryštof, Václav
TI - Further generalized versions of Ilmanen’s lemma on insertion of $C^{1,\omega }$ or $C^{1,\omega }_{\text{\rm loc}}$ functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 445
EP - 455
AB - The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\rightarrow \mathbb {R} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\le f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^{1,\omega }_{\text{loc}}(G) $ such that $ f_1\le f\le f_2 $. This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of $ \mathbb {R}^{n} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in [2,\infty ) $. We also prove a “global" version of Ilmanen’s lemma (where a $ C^{1,\omega } $ function is inserted between functions on an interval $ I\subset \mathbb {R} $).
LA - eng
KW - Ilmanen’s lemma; $ C^{1,\omega } $ function; semiconvex function with general modulus
UR - http://eudml.org/doc/298292
ER -
References
top- Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, 2000. Zbl0946.46002MR1727673
- Bernard P., 10.4171/RSMUP/124-15, Rend. Sem. Mat. Univ. Padova 124 (2010), 221–229. MR2752687DOI10.4171/RSMUP/124-15
- Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR2041617
- Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1993. Zbl0782.46019MR1211634
- Duda J., Zajíček L., Semiconvex functions: representations as suprema of smooth functions and extensions, J. Convex Anal. 16 (2009), no. 1, 239–260. MR2531202
- Duda J., Zajíček L., Smallness of singular sets of semiconvex functions in separable Banach spaces, J. Convex Anal. 20 (2013), no, 2, 573–598. MR3098482
- Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl1329.00102MR3244144
- Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, 1990, Proc. Sympos. Pure Math. 54 (1993), Part 1, 193–204. MR1216585
- Kryštof V., Generalized versions of Ilmanen lemma: insertion of or functions, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 223–231. MR3815687
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.