Further generalized versions of Ilmanen’s lemma on insertion of C 1 , ω or C loc 1 , ω functions

Václav Kryštof

Commentationes Mathematicae Universitatis Carolinae (2021)

  • Volume: 62, Issue: 4, page 445-455
  • ISSN: 0010-2628

Abstract

top
The author proved in 2018 that if G is an open subset of a Hilbert space, f 1 , f 2 : G continuous functions and ω a nontrivial modulus such that f 1 f 2 , f 1 is locally semiconvex with modulus ω and f 2 is locally semiconcave with modulus ω , then there exists f C loc 1 , ω ( G ) such that f 1 f f 2 . This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of n ). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to L p spaces, p [ 2 , ) . We also prove a “global" version of Ilmanen’s lemma (where a C 1 , ω function is inserted between functions on an interval I ).

How to cite

top

Kryštof, Václav. "Further generalized versions of Ilmanen’s lemma on insertion of $C^{1,\omega }$ or $C^{1,\omega }_{\text{\rm loc}}$ functions." Commentationes Mathematicae Universitatis Carolinae 62.4 (2021): 445-455. <http://eudml.org/doc/298292>.

@article{Kryštof2021,
abstract = {The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\rightarrow \mathbb \{R\} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\le f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^\{1,\omega \}_\{\text\{loc\}\}(G) $ such that $ f_1\le f\le f_2 $. This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of $ \mathbb \{R\}^\{n\} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in [2,\infty ) $. We also prove a “global" version of Ilmanen’s lemma (where a $ C^\{1,\omega \} $ function is inserted between functions on an interval $ I\subset \mathbb \{R\} $).},
author = {Kryštof, Václav},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Ilmanen’s lemma; $ C^\{1,\omega \} $ function; semiconvex function with general modulus},
language = {eng},
number = {4},
pages = {445-455},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Further generalized versions of Ilmanen’s lemma on insertion of $C^\{1,\omega \}$ or $C^\{1,\omega \}_\{\text\{\rm loc\}\}$ functions},
url = {http://eudml.org/doc/298292},
volume = {62},
year = {2021},
}

TY - JOUR
AU - Kryštof, Václav
TI - Further generalized versions of Ilmanen’s lemma on insertion of $C^{1,\omega }$ or $C^{1,\omega }_{\text{\rm loc}}$ functions
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2021
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 62
IS - 4
SP - 445
EP - 455
AB - The author proved in 2018 that if $ G $ is an open subset of a Hilbert space, $ f_1,f_2\colon G\rightarrow \mathbb {R} $ continuous functions and $ \omega $ a nontrivial modulus such that $ f_1\le f_2 $, $ f_1 $ is locally semiconvex with modulus $ \omega $ and $ f_2 $ is locally semiconcave with modulus $ \omega $, then there exists $ f\in C^{1,\omega }_{\text{loc}}(G) $ such that $ f_1\le f\le f_2 $. This is a generalization of Ilmanen’s lemma (which deals with linear modulus and functions on an open subset of $ \mathbb {R}^{n} $). Here we extend the mentioned result from Hilbert spaces to some superreflexive spaces, in particular to $ L^p $ spaces, $ p\in [2,\infty ) $. We also prove a “global" version of Ilmanen’s lemma (where a $ C^{1,\omega } $ function is inserted between functions on an interval $ I\subset \mathbb {R} $).
LA - eng
KW - Ilmanen’s lemma; $ C^{1,\omega } $ function; semiconvex function with general modulus
UR - http://eudml.org/doc/298292
ER -

References

top
  1. Benyamini Y., Lindenstrauss J., Geometric Nonlinear Functional Analysis, Vol. 1, American Mathematical Society Colloquium Publications, 48, American Mathematical Society, Providence, 2000. Zbl0946.46002MR1727673
  2. Bernard P., 10.4171/RSMUP/124-15, Rend. Sem. Mat. Univ. Padova 124 (2010), 221–229. MR2752687DOI10.4171/RSMUP/124-15
  3. Cannarsa P., Sinestrari C., Semiconcave Functions, Hamilton–Jacobi Equations, and Optimal Control, Progress in Nonlinear Differential Equations and Their Applications, 58, Birkhäuser, Boston, 2004. MR2041617
  4. Deville R., Godefroy G., Zizler V., Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, 64, Longman Scientific & Technical, Harlow, John Wiley & Sons, New York, 1993. Zbl0782.46019MR1211634
  5. Duda J., Zajíček L., Semiconvex functions: representations as suprema of smooth functions and extensions, J. Convex Anal. 16 (2009), no. 1, 239–260. MR2531202
  6. Duda J., Zajíček L., Smallness of singular sets of semiconvex functions in separable Banach spaces, J. Convex Anal. 20 (2013), no, 2, 573–598. MR3098482
  7. Hájek P., Johanis M., Smooth Analysis in Banach Spaces, De Gruyter Series in Nonlinear Analysis and Applications, 19, De Gruyter, Berlin, 2014. Zbl1329.00102MR3244144
  8. Ilmanen T., The level-set flow on a manifold, Differential Geometry: Partial Differential Equations on Manifolds, Los Angeles, 1990, Proc. Sympos. Pure Math. 54 (1993), Part 1, 193–204. MR1216585
  9. Kryštof V., Generalized versions of Ilmanen lemma: insertion of C 1 , ω or C l o c 1 , ω functions, Comment. Math. Univ. Carolin. 59 (2018), no. 2, 223–231. MR3815687

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.