Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback
Kybernetika (2018)
- Volume: 54, Issue: 2, page 321-335
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topFlorchinger, Patrick. "Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback." Kybernetika 54.2 (2018): 321-335. <http://eudml.org/doc/294265>.
@article{Florchinger2018,
abstract = {In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this work is that the class of stochastic systems considered in this paper contains a lot of systems which cannot be stabilized via time-invariant feedback laws.},
author = {Florchinger, Patrick},
journal = {Kybernetika},
keywords = {stochastic differential systems; Smooth time–varying feedback law; Global asymptotic stability in probability},
language = {eng},
number = {2},
pages = {321-335},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback},
url = {http://eudml.org/doc/294265},
volume = {54},
year = {2018},
}
TY - JOUR
AU - Florchinger, Patrick
TI - Stabilization of nonlinear stochastic systems without unforced dynamics via time-varying feedback
JO - Kybernetika
PY - 2018
PB - Institute of Information Theory and Automation AS CR
VL - 54
IS - 2
SP - 321
EP - 335
AB - In this paper we give sufficient conditions under which a nonlinear stochastic differential system without unforced dynamics is globally asymptotically stabilizable in probability via time-varying smooth feedback laws. The technique developed to design explicitly the time-varying stabilizers is based on the stochastic Lyapunov technique combined with the strategy used to construct bounded smooth stabilizing feedback laws for passive nonlinear stochastic differential systems. The interest of this work is that the class of stochastic systems considered in this paper contains a lot of systems which cannot be stabilized via time-invariant feedback laws.
LA - eng
KW - stochastic differential systems; Smooth time–varying feedback law; Global asymptotic stability in probability
UR - http://eudml.org/doc/294265
ER -
References
top- Abedi, F., A.Hassan, M., Arifin, N., Control Lyapunov function for feedback stabilization of affine in the control stochastic time-varying systems., Int. J. Math. Anal. 5 (2011), 175-188. MR2776555
- Abedi, F., J.Leong, W., Chaharborj, S. S., 10.1155/2013/560647, Math. Prob. Engrg. 2013 (2013), Article ID 560647, 1-10. MR3035628DOI10.1155/2013/560647
- Abedi, F., Leong, W. J., Abedi, M., 10.1155/2015/584935, Math. Prob. Engrg. 2015 (2015), Article ID 584935, 1-7. MR3319255DOI10.1155/2015/584935
- Brockett, R., Asymptotic stability and feedback stabilization., In: Differential Geometric Control Theory (R. Brockett, R. Millman, and H. Sussmann, eds.), Birkhäuser, Basel, Boston 1983, pp. 181-191. Zbl0528.93051MR0708502
- Campion, G., d'Andréa-Novel, B., Bastin, G., 10.1007/bfb0039268, In: International Workshop in Adaptive and Nonlinear Control: Issues in Robotics, Springer-Verlag 1990. DOI10.1007/bfb0039268
- Coron, J. M., 10.1007/bf01211563, Math. Control Signal Systems 5 (1992), 295-312. Zbl0760.93067MR1164379DOI10.1007/bf01211563
- Coron, J. M., Pomet, J. B., A remark on the design of time-varying stabilization feedback laws for controllable systems without drift., In: Proc. IFAC NOLCOS, Bordeaux 1992, pp. 413-417.
- Florchinger, P., 10.1137/S0363012993252309, SIAM J. Control Optim. 33 (1995), 4, 1151-1169. Zbl0845.93085MR1339059DOI10.1137/S0363012993252309
- Florchinger, P., 10.1137/S0363012900370788, SIAM J. Control Optim. 41 (2002), 83-88. Zbl1014.60062MR1920157DOI10.1137/S0363012900370788
- Florchinger, P., 10.1080/00207179.2015.1132009, Int. J. Control 89 (2016), 1406-1415. MR3494626DOI10.1080/00207179.2015.1132009
- Florchinger, P., 10.1002/asjc.1703, Asian J. Control xx (2018), xxx-xxx. DOI10.1002/asjc.1703
- Jurdjevic, V., Quinn, J. P., 10.1016/0022-0396(78)90135-3, J. Differential Equations 28 (1978), 381-389. Zbl0417.93012MR0494275DOI10.1016/0022-0396(78)90135-3
- Khasminskii, R. Z., Stochastic Stability of Differential Equations., Sijthoff and Noordhoff, Alphen aan den Rijn 1980. Zbl1241.60002
- Kushner, H. J., 10.1007/bfb0064937, In: Stability of Stochastic Dynamical Systems (R. Curtain, ed.), Lecture Notes in Mathematics 294, Springer Verlag, Berlin, Heidelberg, New York 1972, pp. 97-124. Zbl0275.93055MR0406657DOI10.1007/bfb0064937
- W.Lin, 10.1016/s0167-6911(96)00050-3, Systems Control Lett. 29 (1996), 101-110. MR1420407DOI10.1016/s0167-6911(96)00050-3
- Pomet, J. B., 10.1016/0167-6911(92)90019-o, Systems Control Lett. 18 (1992), 147-158. MR1149359DOI10.1016/0167-6911(92)90019-o
- Samson, C., Time-varying stabilization of a nonholonomic car-like mobile robot., Rapport de recherche 1515, INRIA Sophia-Antipolis 1991.
- Sepulchre, R., Campion, G., Wertz, V., 10.1177/027836499301200104, In: Proc. IFAC NOLCOS, Bordeaux 1992, pp. 418-423. DOI10.1177/027836499301200104
- Sontag, E., 10.1007/978-1-4612-4484-4_4, In: Robust Control of Linear Systems and Nonlinear Control (M. K. Kaashoek et al., eds.), Birkhäuser, Boston 1990, pp. 61-81. Zbl0735.93063MR1115377DOI10.1007/978-1-4612-4484-4_4
- D.Sontag, E., J.Sussmann, H., 10.1109/cdc.1980.271934, In: Proc. 19th IEEE Conference on Decision and Control, Albuquerque 1980, pp. 916-921. DOI10.1109/cdc.1980.271934
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.