On the maximal run-length function in the Lüroth expansion
Czechoslovak Mathematical Journal (2018)
- Volume: 68, Issue: 1, page 277-291
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topSun, Yu, and Xu, Jian. "On the maximal run-length function in the Lüroth expansion." Czechoslovak Mathematical Journal 68.1 (2018): 277-291. <http://eudml.org/doc/294301>.
@article{Sun2018,
abstract = {We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate.},
author = {Sun, Yu, Xu, Jian},
journal = {Czechoslovak Mathematical Journal},
keywords = {Lüroth expansion; run-length function; Hausdorff dimension},
language = {eng},
number = {1},
pages = {277-291},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the maximal run-length function in the Lüroth expansion},
url = {http://eudml.org/doc/294301},
volume = {68},
year = {2018},
}
TY - JOUR
AU - Sun, Yu
AU - Xu, Jian
TI - On the maximal run-length function in the Lüroth expansion
JO - Czechoslovak Mathematical Journal
PY - 2018
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 68
IS - 1
SP - 277
EP - 291
AB - We obtain a metrical property on the asymptotic behaviour of the maximal run-length function in the Lüroth expansion. We also determine the Hausdorff dimension of a class of exceptional sets of points whose maximal run-length function has sub-linear growth rate.
LA - eng
KW - Lüroth expansion; run-length function; Hausdorff dimension
UR - http://eudml.org/doc/294301
ER -
References
top- Dajani, K., Kraaikamp, C., Ergodic Theory of Numbers, Carus Mathematical Monographs 29, Mathematical Association of America, Washington (2002). (2002) Zbl1033.11040MR1917322
- Erdős, P., Rényi, A., 10.1007/BF02795493, J. Anal. Math. 23 (1970), 103-111. (1970) Zbl0225.60015MR0272026DOI10.1007/BF02795493
- Falconer, K., Fractal Geometry: Mathematical Foundations and Applications, Wiley & Sons, Chichester (1990). (1990) Zbl0689.28003MR1102677
- Galambos, J., 10.1007/BFb0081642, Lecture Notes in Mathematics 502, Springer, Berlin (1976). (1976) Zbl0322.10002MR0568141DOI10.1007/BFb0081642
- Hutchinson, J. E., 10.1512/iumj.1981.30.30055, Indiana Univ. Math. J. 30 (1981), 713-747. (1981) Zbl0598.28011MR0625600DOI10.1512/iumj.1981.30.30055
- Kesseböhmer, M., Munday, S., Stratmann, B. O., 10.1515/9783110439427, De Gruyter Graduate, De Gruyter, Berlin (2016). (2016) Zbl1362.37003MR3585883DOI10.1515/9783110439427
- Li, J., Wu, M., 10.1016/j.jmaa.2015.12.001, J. Math. Anal. Appl. 436 (2016), 355-365. (2016) Zbl06536909MR3440098DOI10.1016/j.jmaa.2015.12.001
- Li, J., Wu, M., 10.1007/s00605-016-0977-y, Monatsh. Math. 182 (2017), 865-875. (2017) Zbl06704122MR3624949DOI10.1007/s00605-016-0977-y
- Lüroth, J., 10.1007/BF01443883, Math. Ann. 21 (1883), 411-423 German 9999JFM99999 15.0187.01. (1883) MR1510205DOI10.1007/BF01443883
- Ma, J.-H., Wen, S.-Y., Wen, Z.-Y., 10.1007/s00605-007-0455-7, Monatsh. Math. 151 (2007), 287-292. (2007) Zbl1170.28001MR2329089DOI10.1007/s00605-007-0455-7
- Moran, P. A. P., 10.1017/s0305004100022684, Proc. Camb. Philos. Soc. 42 (1946), 15-23. (1946) Zbl0063.04088MR0014397DOI10.1017/s0305004100022684
- Révész, P., 10.1142/5847, World Scientific, Hackensack (2005). (2005) Zbl1090.60001MR2168855DOI10.1142/5847
- Sun, Y., Xu, J., 10.1007/s00605-016-0974-1, Monatsh. Math. 184 (2017), 291-296. (2017) Zbl06788682MR3696113DOI10.1007/s00605-016-0974-1
- Wang, B. W., Wu, J., On the maximal run-length function in continued fractions, Annales Univ. Sci. Budapest., Sect. Comp. 34 (2011), 247-268. (2011)
- Zou, R., 10.1007/s10587-011-0055-5, Czech. Math. J. 61 (2011), 881-888. (2011) Zbl1249.11085MR2886243DOI10.1007/s10587-011-0055-5
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.