The nonexistence of universal metric flows
Commentationes Mathematicae Universitatis Carolinae (2018)
- Volume: 59, Issue: 4, page 487-493
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGeschke, Stefan. "The nonexistence of universal metric flows." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 487-493. <http://eudml.org/doc/294312>.
@article{Geschke2018,
abstract = {We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\rightarrow X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega $-limit sets, answering a question by Will Brian.},
author = {Geschke, Stefan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal metric dynamical system; minimal dynamical system},
language = {eng},
number = {4},
pages = {487-493},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The nonexistence of universal metric flows},
url = {http://eudml.org/doc/294312},
volume = {59},
year = {2018},
}
TY - JOUR
AU - Geschke, Stefan
TI - The nonexistence of universal metric flows
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 487
EP - 493
AB - We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\rightarrow X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega $-limit sets, answering a question by Will Brian.
LA - eng
KW - universal metric dynamical system; minimal dynamical system
UR - http://eudml.org/doc/294312
ER -
References
top- Anderson R. D., 10.1090/S0002-9904-1963-10945-3, Bull. Amer. Math. Soc. 69 (1963), no. 2, 259–264. MR0144324DOI10.1090/S0002-9904-1963-10945-3
- Balcar B., Błaszczyk A., On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 7–11. MR1056164
- Beleznay F., Foreman M., 10.2307/2375041, Amer. J. Math. 117 (1995), no. 1, 203–239. MR1314463DOI10.2307/2375041
- Ben Yaacov I., Melleray J., Tsankov T., 10.1007/s00039-017-0398-7, Geom. Funct. Anal. 27 (2017), no. 1, 67–77. MR3613453DOI10.1007/s00039-017-0398-7
- Bowen R., 10.1016/0022-0396(75)90065-0, J. Differential Equations 18 (1975), 333–339. MR0413181DOI10.1016/0022-0396(75)90065-0
- Brian W., Is there a universal -limit set?, available at mathoverflow.net/questions/ 209634.
- Ellis R., Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969. Zbl0193.51502MR0267561
- Furstenberg H., 10.2307/2373137, Amer. J. Math. 83 (1963), 477–515. MR0157368DOI10.2307/2373137
- Morse M., Hedlund G. A., 10.2307/2371431, Amer. J. Math. 62 (1940), no. 1, 1–42. MR0000745DOI10.2307/2371431
- Turek S., A note on universal minimal dynamical systems, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 781–783. MR1159826
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.