The nonexistence of universal metric flows

Stefan Geschke

Commentationes Mathematicae Universitatis Carolinae (2018)

  • Volume: 59, Issue: 4, page 487-493
  • ISSN: 0010-2628

Abstract

top
We consider dynamical systems of the form ( X , f ) where X is a compact metric space and f : X X is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract ω -limit sets, answering a question by Will Brian.

How to cite

top

Geschke, Stefan. "The nonexistence of universal metric flows." Commentationes Mathematicae Universitatis Carolinae 59.4 (2018): 487-493. <http://eudml.org/doc/294312>.

@article{Geschke2018,
abstract = {We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\rightarrow X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega $-limit sets, answering a question by Will Brian.},
author = {Geschke, Stefan},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {universal metric dynamical system; minimal dynamical system},
language = {eng},
number = {4},
pages = {487-493},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {The nonexistence of universal metric flows},
url = {http://eudml.org/doc/294312},
volume = {59},
year = {2018},
}

TY - JOUR
AU - Geschke, Stefan
TI - The nonexistence of universal metric flows
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2018
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 59
IS - 4
SP - 487
EP - 493
AB - We consider dynamical systems of the form $(X,f)$ where $X$ is a compact metric space and $f\colon X\rightarrow X$ is either a continuous map or a homeomorphism and provide a new proof that there is no universal metric dynamical system of this kind. The same is true for metric minimal dynamical systems and for metric abstract $\omega $-limit sets, answering a question by Will Brian.
LA - eng
KW - universal metric dynamical system; minimal dynamical system
UR - http://eudml.org/doc/294312
ER -

References

top
  1. Anderson R. D., 10.1090/S0002-9904-1963-10945-3, Bull. Amer. Math. Soc. 69 (1963), no. 2, 259–264. MR0144324DOI10.1090/S0002-9904-1963-10945-3
  2. Balcar B., Błaszczyk A., On minimal dynamical systems on Boolean algebras, Comment. Math. Univ. Carolin. 31 (1990), no. 1, 7–11. MR1056164
  3. Beleznay F., Foreman M., 10.2307/2375041, Amer. J. Math. 117 (1995), no. 1, 203–239. MR1314463DOI10.2307/2375041
  4. Ben Yaacov I., Melleray J., Tsankov T., 10.1007/s00039-017-0398-7, Geom. Funct. Anal. 27 (2017), no. 1, 67–77. MR3613453DOI10.1007/s00039-017-0398-7
  5. Bowen R., 10.1016/0022-0396(75)90065-0, J. Differential Equations 18 (1975), 333–339. MR0413181DOI10.1016/0022-0396(75)90065-0
  6. Brian W., Is there a universal ω -limit set?, available at mathoverflow.net/questions/ 209634. 
  7. Ellis R., Lectures on Topological Dynamics, W. A. Benjamin, New York, 1969. Zbl0193.51502MR0267561
  8. Furstenberg H., 10.2307/2373137, Amer. J. Math. 83 (1963), 477–515. MR0157368DOI10.2307/2373137
  9. Morse M., Hedlund G. A., 10.2307/2371431, Amer. J. Math. 62 (1940), no. 1, 1–42. MR0000745DOI10.2307/2371431
  10. Turek S., A note on universal minimal dynamical systems, Comment. Math. Univ. Carolin. 32 (1991), no. 4, 781–783. MR1159826

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.