Displaying similar documents to “The nonexistence of universal metric flows”

Isometric embeddings of a class of separable metric spaces into Banach spaces

Sophocles K. Mercourakis, Vassiliadis G. Vassiliadis (2018)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let ( M , d ) be a bounded countable metric space and c > 0 a constant, such that d ( x , y ) + d ( y , z ) - d ( x , z ) c , for any pairwise distinct points x , y , z of M . For such metric spaces we prove that they can be isometrically embedded into any Banach space containing an isomorphic copy of .

Some approximate fixed point theorems without continuity of the operator using auxiliary functions

Sumit Chandok, Arslan Hojjat Ansari, Tulsi Dass Narang (2019)

Mathematica Bohemica

Similarity:

We introduce partial generalized convex contractions of order 4 and rank 4 using some auxiliary functions. We present some results on approximate fixed points and fixed points for such class of mappings having no continuity condition in α -complete metric spaces and μ -complete metric spaces. Also, as an application, some fixed point results in a metric space endowed with a binary relation and some approximate fixed point results in a metric space endowed with a graph have been obtained....

The discriminant and oscillation lengths for contact and Legendrian isotopies

Vincent Colin, Sheila Sandon (2015)

Journal of the European Mathematical Society

Similarity:

We define an integer-valued non-degenerate bi-invariant metric (the discriminant metric) on the universal cover of the identity component of the contactomorphism group of any contact manifold. This metric has a very simple geometric definition, based on the notion of discriminant points of contactomorphisms. Using generating functions we prove that the discriminant metric is unbounded for the standard contact structures on 2 n × S 1 and P 2 n + 1 . On the other hand we also show by elementary arguments...

Differential equations in metric spaces

Jacek Tabor (2002)

Mathematica Bohemica

Similarity:

We give a meaning to derivative of a function u X , where X is a complete metric space. This enables us to investigate differential equations in a metric space. One can prove in particular Gronwall’s Lemma, Peano and Picard Existence Theorems, Lyapunov Theorem or Nagumo Theorem in metric spaces. The main idea is to define the tangent space 𝒯 x X of x X . Let u , v [ 0 , 1 ) X , u ( 0 ) = v ( 0 ) be continuous at zero. Then by the definition u and v are in the same equivalence class if they are tangent at zero, that is if lim h 0 + d ( u ( h ) , v ( h ) ) h = 0 . By...

Metric unconditionality and Fourier analysis

Stefan Neuwirth (1998)

Studia Mathematica

Similarity:

We investigate several aspects of almost 1-unconditionality. We characterize the metric unconditional approximation property (umap) in terms of “block unconditionality”. Then we focus on translation invariant subspaces L E p ( ) and C E ( ) of functions on the circle and express block unconditionality as arithmetical conditions on E. Our work shows that the spaces p E ( ) , p an even integer, have a singular behaviour from the almost isometric point of view: property (umap) does not interpolate between L E p ( ) ...

Wijsman hyperspaces of non-separable metric spaces

Rodrigo Hernández-Gutiérrez, Paul J. Szeptycki (2015)

Fundamenta Mathematicae

Similarity:

Given a metric space ⟨X,ρ⟩, consider its hyperspace of closed sets CL(X) with the Wijsman topology τ W ( ρ ) . It is known that C L ( X ) , τ W ( ρ ) is metrizable if and only if X is separable, and it is an open question by Di Maio and Meccariello whether this is equivalent to C L ( X ) , τ W ( ρ ) being normal. We prove that if the weight of X is a regular uncountable cardinal and X is locally separable, then C L ( X ) , τ W ( ρ ) is not normal. We also solve some questions by Cao, Junnila and Moors regarding isolated points in Wijsman hyperspaces. ...

Lipschitz constants for a hyperbolic type metric under Möbius transformations

Yinping Wu, Gendi Wang, Gaili Jia, Xiaohui Zhang (2024)

Czechoslovak Mathematical Journal

Similarity:

Let D be a nonempty open set in a metric space ( X , d ) with D . Define h D , c ( x , y ) = log 1 + c d ( x , y ) d D ( x ) d D ( y ) , where d D ( x ) = d ( x , D ) is the distance from x to the boundary of D . For every c 2 , h D , c is a metric. We study the sharp Lipschitz constants for the metric h D , c under Möbius transformations of the unit ball, the upper half space, and the punctured unit ball.

Wasserstein metric and subordination

Philippe Clément, Wolfgang Desch (2008)

Studia Mathematica

Similarity:

Let ( X , d X ) , ( Ω , d Ω ) be complete separable metric spaces. Denote by (X) the space of probability measures on X, by W p the p-Wasserstein metric with some p ∈ [1,∞), and by p ( X ) the space of probability measures on X with finite Wasserstein distance from any point measure. Let f : Ω p ( X ) , ω f ω , be a Borel map such that f is a contraction from ( Ω , d Ω ) into ( p ( X ) , W p ) . Let ν₁,ν₂ be probability measures on Ω with W p ( ν , ν ) finite. On X we consider the subordinated measures μ i = Ω f ω d ν i ( ω ) . Then W p ( μ , μ ) W p ( ν , ν ) . As an application we show that the solution measures ϱ α ( t ) ...

Pairs of convex bodies in a hyperspace over a Minkowski two-dimensional space joined by a unique metric segment

Agnieszka Bogdewicz, Jerzy Grzybowski (2009)

Banach Center Publications

Similarity:

Let ( , | | · | | ) be a Minkowski space with a unit ball and let ϱ H be the Hausdorff metric induced by | | · | | in the hyperspace of convex bodies (nonempty, compact, convex subsets of ℝ). R. Schneider [RSP] characterized pairs of elements of which can be joined by unique metric segments with respect to ϱ H B for the Euclidean unit ball Bⁿ. We extend Schneider’s theorem to the hyperspace ( ² , ϱ H ) over any two-dimensional Minkowski space.

Extending generalized Whitney maps

Ivan Lončar (2017)

Archivum Mathematicum

Similarity:

For metrizable continua, there exists the well-known notion of a Whitney map. If X is a nonempty, compact, and metric space, then any Whitney map for any closed subset of 2 X can be extended to a Whitney map for 2 X [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem.

About w c s -covers and w c s * -networks on the Vietoris hyperspace ( X )

Luong Quoc Tuyen, Ong V. Tuyen, Phan D. Tuan, Nguzen X. Truc (2023)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study some generalized metric properties on the hyperspace ( X ) of finite subsets of a space X endowed with the Vietoris topology. We prove that X has a point-star network consisting of (countable) w c s -covers if and only if so does ( X ) . Moreover, X has a sequence of w c s -covers with property ( P ) which is a point-star network if and only if so does ( X ) , where ( P ) is one of the following properties: point-finite, point-countable, compact-finite, compact-countable, locally finite, locally countable....

Ramsey partitions and proximity data structures

Manor Mendel, Assaf Naor (2007)

Journal of the European Mathematical Society

Similarity:

This paper addresses two problems lying at the intersection of geometric analysis and theoretical computer science: The non-linear isomorphic Dvoretzky theorem and the design of good approximate distance oracles for large distortion.We introduce the notion of Ramsey partitions of a finite metric space, and show that the existence of good Ramsey partitions implies a solution to the metric Ramsey problem for large distortion (also known as the non-linear version of the isomorphic Dvoretzky...